2021-2022学年冀教版九年级数学下册29.3切线的性质与判定 同步达标测试(Word版 含答案)

文档属性

名称 2021-2022学年冀教版九年级数学下册29.3切线的性质与判定 同步达标测试(Word版 含答案)
格式 doc
文件大小 422.4KB
资源类型 教案
版本资源 冀教版
科目 数学
更新时间 2021-12-28 21:10:12

图片预览

文档简介

2021-2022学年冀教版九年级数学下册《29.3切线的性质与判定》同步达标测试(附答案)
一.选择题(共10小题,满分50分)
1.如图,PA、PB分别与⊙O相切于A、B两点,点C为⊙O上一点,连接AC、BC,若∠P=78°,则∠ACB的度数为(  )
A.102° B.51° C.41° D.39°
2.如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D,连接CD.若∠B=50°,则∠OCD为(  )
A.15° B.20° C.25° D.30°
3.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为(  )
A.1 B.2 C. D.
4.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是(  )
A.0 B.1 C.2 D.3
5.如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是(  )
A.①② B.①②③ C.①④ D.①②④
6.如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?(  )
A.97° B.104° C.116° D.142°
7.如图为△ABC和一圆的重迭情形,此圆与直线BC相切于C点,且与AC交于另一点D.若∠A=70°,∠B=60°,则的度数为何(  )
A.50° B.60° C.100° D.120°
8.如图,CD是⊙O的切线,T为切点,A是上的一点,若∠TAB=100°,则∠BTD的度数为(  )
A.20° B.40° C.60° D.80°
9.如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是(  )
A.4 B.2 C.2 D.4
10.如图,直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?(  )
A. B. C. D.
二.填空题(共5小题,满分25分)
11.如图,在△ABC中,AB=AC,∠B=30°,以点A为圆心,以3cm为半径作⊙A,当AB=   cm时,BC与⊙A相切.
12.如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为   .
13.已知⊙O中,的度数为70°,过点A的直线AC与⊙O相切,则弦切角∠BAC的度数为   .
14.如图,已知直线y=﹣x+4与x、y轴交于A、B两点,⊙O的半径为1,P为AB上一动点,PQ切⊙O于Q点.当线段PQ长取最小值时,直线PQ交y轴于M点,a为过点M的一条直线,则点P到直线a的距离的最大值为   .
15.如图所示的网格由边长为1个单位长度的小正方形组成,点A、B、C在直角坐标系中的坐标分别为(3,6),(﹣3,3),(7,﹣2),则△ABC内心的坐标为   .
三.解答题(共5小题,满分45分)
16.如图,在⊙O中,AB为⊙O的直径,C为⊙O上一点,P是的中点,过点P作AC的垂线,交AC的延长线于点D,连接OP.
(1)求证:DP是⊙O的切线;
(2)若AC=5,sin∠APC=,求AP的长.
17.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交于点D,过点D作DE∥BC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)过点D作DF⊥AB于点F,连接BD.若OF=1,BF=2,求BD的长度.
18.如图,AB是⊙O的直径,点C,点D在⊙O上,,AD与BC相交于点E,AF与⊙O相切于点A,与BC延长线相交于点F.
(1)求证:AE=AF.
(2)若EF=12,sin∠ABF=,求⊙O的半径.
19.在⊙O中,弦CD与直径AB相交于点P,∠ABC=63°.
(Ⅰ)如图①,若∠APC=100°,求∠BAD和∠CDB的大小;
(Ⅱ)如图②,若CD⊥AB,过点D作⊙O的切线,与AB的延长线相交于点E,求∠E的大小.
20.如图,在四边形ABCD中,AD∥BC,AB=2a,∠ABC=60°,过点B的⊙O与边AB,BC分别交于E,F两点.OG⊥BC,垂足为G,OG=a.连接OB,OE,OF.
(1)若BF=2a,试判断△BOF的形状,并说明理由;
(2)若BE=BF,求证:⊙O与AD相切于点A.
参考答案
一.选择题(共10小题,满分50分)
1.解:连接OA、OB,
∵PA、PB分别与⊙O相切于A、B两点,
∴OA⊥PA,OB⊥PB,
∴∠OAP=∠OBP=90°,
∴∠AOB=180°﹣∠P=180°﹣78°=102°,
∴∠ACB=∠AOB=×102°=51°.
故选:B.
2.解:连接OA,如图,
∵AB切⊙O于点A,
∴OA⊥AB,
∴∠OAB=90°,
∵∠B=50°,
∴∠AOB=90°﹣50°=40°,
∴∠ADC=∠AOB=20°,
∵AD∥OB,
∴∠OCD=∠ADC=20°.
故选:B.
3.解:连接OB,
∵四边形OABC是菱形,
∴OA=AB,
∵OA=OB,
∴OA=AB=OB,
∴∠AOB=60°,
∵BD是⊙O的切线,
∴∠DBO=90°,
∵OB=1,
∴BD=OB=,
故选:D.
4.解:连接DG、AG,作GH⊥AD于H,连接OD,如图,
∵G是BC的中点,
∴AG=DG,
∴GH垂直平分AD,
∴点O在HG上,
∵AD∥BC,
∴HG⊥BC,
∴BC与圆O相切;
∵OG=OD,
∴点O不是HG的中点,
∴圆心O不是AC与BD的交点;
∵∠ADF=∠DAE=90°,
∴∠AEF=90°,
∴四边形AEFD为⊙O的内接矩形,
∴AF与DE的交点是圆O的圆心;
∴(1)错误,(2)(3)正确.
故选:C.
5.解:∵AB为直径,
∴∠ADB=90°,
∴BD⊥AC,
而AB=CB,
∴AD=DC,所以①正确;
∵AB=CB,
∴∠1=∠2,
而CD=ED,
∴∠3=∠4,
∵CF∥AB,
∴∠1=∠3,
∴∠1=∠2=∠3=∠4,
∴△CBA∽△CDE,所以②正确;
∵△ABC不能确定为直角三角形,
∴∠1不能确定等于45°,
∴与不能确定相等,所以③错误;
∵DA=DC=DE,
∴点E在以AC为直径的圆上,
∴∠AEC=90°,
∴CE⊥AE,
而CF∥AB,
∴AB⊥AE,
∴AE为⊙O的切线,所以④正确.
故选:D.
6.解:∵BD是圆O的直径,
∴∠BAD=90°,
又∵AC平分∠BAD,
∴∠BAF=∠DAF=45°,
∵直线ED为圆O的切线,
∴∠ADE=∠ABD=19°,
∴∠AFB=180°﹣∠BAF﹣∠ABD=180°﹣45°﹣19°=116°.
故选:C.
7.解:∵∠A=70°,∠B=60°,
∴∠C=50°.
∵此圆与直线BC相切于C点,
∴的度数=2∠C=100°.
故选:C.
8.解:∵四边形ABET是圆内接四边形,
∴∠E=180°﹣∠A=80°,
又CD是⊙O的切线,T为切点,
∴∠BTD=∠E=80°.
故选:D.
9.解:过点B作BH⊥CD的延长线于点H.
∵点D为△ABC的内心,∠A=60°,
∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),
∴∠BDC=90°+∠A=90°+×60°=120°,
则∠BDH=60°,
∵BD=4,
∴DH=2,BH=2,
∵CD=2,
∴△DBC的面积=CD BH==2,
故选:B.
10.解:设AD=x,
∵直角三角形ABC的内切圆分别与AB、BC相切于D点、E点,
∴BD=BE=1,
∴AB=x+1,AC=AD+CE=x+4,
在Rt△ABC中,(x+1)2+52=(x+4)2,解得x=,
即AD的长度为.
故选:D.
二.填空题(共5小题,满分25分)
11.解:如图,过点A作AD⊥BC于点D.
∵AB=AC,∠B=30°,
∴AD=AB,即AB=2AD.
又∵BC与⊙A相切,
∴AD就是圆A的半径,
∴AD=3cm,
则AB=2AD=6cm.
故答案是:6.
12.解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,
∴AB==6,
在Rt△ADC中,∠C=90°,AC=12,CD=5,
∴AD==13,
当⊙P于BC相切时,点P到BC的距离=6,
过P作PH⊥BC于H,
则PH=6,
∵∠C=90°,
∴AC⊥BC,
∴PH∥AC,
∴△DPH∽△DAC,
∴,
∴=,
∴PD=6.5,
∴AP=6.5;
当⊙P与AB相切时,点P到AB的距离=6,
过P作PG⊥AB于G,
则PG=6,
∵AD=BD=13,
∴∠PAG=∠B,
∵∠AGP=∠C=90°,
∴△AGP∽△BCA,
∴,
∴=,
∴AP=3,
∵CD=5<6,
∴半径为6的⊙P不与△ABC的AC边相切,
综上所述,AP的长为6.5或3,
故答案为:6.5或3.
13.解:如图;的度数为70°,EF与⊙O相切,切点为A;
∵的度数为70°,
∴∠ADB=35°.
∵EF是⊙O的切线,
∴∠FAB=∠ADB=35°,
∴∠DAE=180°﹣∠FAB=145°.
①当∠BAC=∠BAF时,∠BAC=35°;
②当∠BAC=∠BAE时,∠BAE=145°;
因此弦切角∠BAC的度数为35°或145°.
14.解:如图,
在直线y=﹣x+4上,x=0时,y=4,
当y=0时,x=,
∴OB=4,OA=,
∴tan∠OBA==,
∴∠OBA=30°,
由PQ切⊙O于Q点可知:OQ⊥PQ,
∴PQ=,
由于OQ=1,
因此当OP最小时PQ长取最小值,此时OP⊥AB,
∴OP=OB=2,
此时PQ==,
BP==2,
∴OQ=OP,即∠OPQ=30°,
若使点P到直线a的距离最大,
则最大值为PM,且M位于x轴下方,
过点P作PE⊥y轴于点E,
∴EP=BP=,
∴BE==3,
∴OE=4﹣3=1,
∵OE=OP,
∴∠OPE=30°,
∴∠EPM=30°+30°=60°,
即∠EMP=30°,
∴PM=2EP=2.
故答案为:2.
15.解:如图,点I即为△ABC的内心.
所以△ABC内心I的坐标为(2,3).
故答案为:(2,3).
三.解答题(共5小题,满分45分)
16.(1)证明:∵P是的中点,
∴=,
∴∠PAD=∠PAB,
∵OA=OP,
∴∠APO=∠PAO,
∴∠DAP=∠APO,
∴AD∥OP,
∵PD⊥AD,
∴PD⊥OP,
∴DP是⊙O的切线;
(2)解:连接BC交OP于E,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵P是的中点,
∴OP⊥BC,CE=BE,
∴四边形CDPE是矩形,
∴CD=PE,PD=CE,
∵∠APC=∠B,
∴sin∠APC=sin∠ABC==,
∵AC=5,
∴AB=13,
∴BC=12,
∴PD=CE=BE=6,
∵OE=AC=,OP=,
∴CD=PE=﹣=4,
∴AD=9,
∴AP===3.
17.解:(1)连接OD,如图,
∵OA=OD,
∴∠OAD=∠ADO,
∵AD平分∠CAB,
∴∠DAE=∠OAD,
∴∠ADO=∠DAE,
∴OD∥AE,
∵DE∥BC,
∴∠E=90°,
∴∠ODE=180°﹣∠E=90°,
∴DE是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ADB=90°,
∵OF=1,BF=2,
∴OB=3,
∴AF=4,BA=6.
∵DF⊥AB,
∴∠DFB=90°,
∴∠ADB=∠DFB,
又∵∠DBF=∠ABD,
∴△DBF∽△ABD,
∴=,
∴BD2=BF BA=2×6=12.
∴BD=2.
解法二:利用勾股定理求出DF,再利用勾股定理求出BD即可.
18.(1)证明:∵AF与⊙O相切于点A,
∴FA⊥AB,
∴∠FAB=90°,
∴∠F+∠B=90°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠CAE+∠CEA=90°,
∵=,
∴∠CAE=∠D,
∴∠D+∠CEA=90°,
∵∠D=∠B,
∴∠B+∠CEA=90°,
∴∠F=∠CEA,
∴AE=AF.
(2)解:∵AE=AF,∠ACB=90°,
∴CF=CE=EF=6,
∵∠ABF=∠D=∠CAE,
∴sin∠ABF=sin∠CAE=,
∴,
∴AE=10,
∴AC===8,
∵sin∠ABC===,
∴AB=,
∴OA=AB=.
即⊙O的半径为.
19.解:(1)∵∠APC是△PBC的一个外角,
∴∠C=∠APC﹣∠ABC=100°﹣63°=37°,
由圆周角定理得:∠BAD=∠C=37°,∠ADC=∠ABC=63°,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠CDB=∠ADB﹣∠ADC=90°﹣63°=27°;
(2)连接OD,如图②所示:
∵CD⊥AB,
∴∠CPB=90°,
∴∠PCB=90°﹣∠ABC=90°﹣63°=27°,
∵DE是⊙O的切线,
∴DE⊥OD,
∴∠ODE=90°,
∵∠BOD=2∠PCB=54°,
∴∠E=90°﹣∠BOD=90°﹣54°=36°.
20.(1)解:△BOF为等腰直角三角形.
理由如下:∵OG⊥BC,
∴BG=FG=BF=a,
∵OG=a,
∴BG=OG,FG=OG,
∴△BOG和△OFG都是等腰直角三角形,
∴∠BOG=∠FOG=45°,
∴∠BOF=90°,
而OB=OF,
∴△BOF为等腰直角三角形.
(2)证明:连接EF,如图,
∵∠EBF=60°,BF=BE,
∴△BEF为等边三角形,
∴EB=EF,
∵OG垂直平分BF,
∴点E、O、G共线,
即EG⊥BF,
∵OG=a,∠OBG=30°,
∴BG=OG=a,
∴BE=2BG=2a,
而AB=2a,
∴点A与点E重合,
∵AD∥BC,AG⊥BF,
∴AG⊥AD,
∴⊙O与AD相切于点A