概率
(时间:120分钟 满分:150分)
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.某个地区从某年起几年内的新生婴儿数及其中的男婴数如下表:
时间范围 1年内 2年内 3年内 4年内
新生婴儿数 5 544 9 013 13 520 17 191
男婴数 2 716 4 899 6 812 8 590
这一地区男婴出生的概率约是( )
A.0.4 B.0.5
C.0.6 D.0.7
解析:选B 由表格可知,男婴出生的频率依次约为0.49,0.54,0.50,0.50,故这一地区男婴出生的概率约为0.5.
2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )
A.0.3 B.0.4
C.0.6 D.0.7
解析:选B 设“只用现金支付”为事件A,“既用现金支付也用非现金支付”为事件B,“不用现金支付”为事件C,则P(C)=1-P(A)-P(B)=1-0.45-0.15=0.4.故选B.
3.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9
[23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12
[35.5,39.5) 7 [39.5,43.5) 3
根据样本的频率分布估计大于或等于31.5的数据约占( )
A. B.
C. D.
解析:选B 由题意知,样本的容量为66,而落在[31.5,43.5)内的样本数为12+7+3=22,故大于或等于31.5的数据约占=.
4.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若每局中甲、乙两队获胜的概率相同,则甲队获得冠军的概率为( )
A. B.
C. D.
解析:选A 若甲队获得冠军,则可分为两种情况:(1)只比赛一局,甲赢,其概率为P1=;(2)需比赛两局,第一局甲负,第二局甲赢,其概率为P2=×=.故甲队获得冠军的概率为P1+P2=.
5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )
A. B.
C. D.
解析:选A 记3个兴趣小组分别为1,2,3,如甲参加1组记为“甲1”,则样本空间Ω={(甲1,乙1),(甲1,乙2),(甲1,乙3),(甲2,乙1),(甲2,乙2),(甲2,乙3),(甲3,乙1),(甲3,乙2),(甲3,乙3)},共9个样本点.记事件A为“甲、乙两位同学参加同一个兴趣小组”,则事件A={(甲1,乙1),(甲2,乙2),(甲3,乙3)},共3个样本点.因此P(A)==.
6.甲、乙两位同学进行乒乓球比赛,甲获胜的概率为0.4.现采用随机模拟的方法估计这两位同学打3局比赛甲恰好获胜2局的概率;先利用计算器产生0到9之间的取整数值的随机数,用1,2,3,4表示甲获胜,用5,6,7,8,9,0表示乙获胜,再以每3个随机数为1组,代表3局比赛的结果.经随机模拟产生了如下30组随机数:
102 231 146 027 590 763 245 207 310 386
350 481 337 286 139 579 684 487 370 175
772 235 246 487 569 047 008 341 287 114
据此估计,这两位同学打3局比赛甲恰好获胜2局的概率为( )
A. B.
C. D.
解析:选B 由题意知,在30组随机数中表示打3局比赛甲恰好获胜2局的有102,146,245,310,481,337,139,235,246,共9组随机数,∴所求概率为=.
7.某市创建全国文明城市工作验收时,有关部门对某校高二年级6名学生进行了问卷调查,6人得分分别为5,6,7,8,9,10.把这6名学生的得分看成一个总体,如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为( )
A. B.
C. D.
解析:选C 总体平均数为×(5+6+7+8+9+10)=7.5,设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”,从总体中抽取2个个体全部可能的结果有(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15种,事件A发生的可能结果有(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共7种,所以所求的概率为P(A)=.
8.在如图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是( )
A. B.
C. D.
解析:选A 当开关合上时,电路畅通,即A至B畅通,且B至C畅通,可求得A至B畅通的概率为1-×=,B至C畅通的概率为1-×=,所以电路畅通的概率为×=.
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)
9.已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是( )
A.如果B A,那么P(A∪B)=0.2,P(AB)=0.5
B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0
C.如果A与B相互独立,那么P(A∪B)=0.7,P(AB)=0
D.如果A与B相互独立,那么P()=0.4,P(A)=0.4.
解析:选BD 对于A,如果B A,那么P(A∪B)=0.5,P(AB)=0.2,故A错误;
对于B,如果A与B互斥,那么P(A∪B)=P(A)+P(B)=0.7,P(AB)=0,故B正确;
对于C,如果A与B相互独立,那么P(A∪B)=P(A)+P(B)-P(AB)=0.5+0.2-0.5×0.2=0.6,P(AB)=P(A)P(B)=0.5×0.2=0.1,故C错误;
对于D,如果A与B相互独立,那么P()=P()P()=(1-0.5)×(1-0.2)=0.4,
P(A)=P(A)P()=0.5×(1-0.2)=0.4,故D正确.
10.已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有五个相同的小球,标号为1,2,3,5,6.现从甲罐、乙罐中分别随机抽取1个小球,记事件A=“抽取的两个小球标号之和大于5”,事件B=“抽取的两个小球标号之积大于8”,则( )
A.事件A发生的概率为
B.事件A∪B发生的概率为
C.事件A∩B发生的概率为
D.从甲罐中抽到标号为2的小球的概率为
解析:选BC 由题意知从甲罐、乙罐中分别随机抽取1个小球,样本点总数为4×5=20,且每一个样本点出现的可能性都相等(此处不再一一罗列).
对于A,事件A包含的样本点有(1,5),(1,6),(2,5),(2,6),(3,3),(3,5),(3,6),(4,2),(4,3),(4,5),(4,6),共11个,∴P(A)=,故A错误;
对于B,事件A∪B包含的样本点有(1,5),(1,6),(2,5),(2,6),(3,3),(3,5),(3,6),(4,2),(4,3),(4,5),(4,6),共11个,∴P(B)=,故B正确;
对于C,事件A∩B包含的样本点有(2,5),(2,6),(3,3),(3,5),(3,6),(4,3),(4,5),(4,6),共8个,∴P(C)==,故C正确;
对于D,从甲罐中抽到标号为2的小球包含的样本点有(2,1),(2,2),(2,3),(2,5),(2,6),共5个,故对应概率为=,故D错误.
11.小张上班从家到公司开车有两条路线,所需时间(单位:分)随交通堵塞状况有所变化,其概率分布如下表所示.
所需时间/分 30 40 50 60
路线一 0.5 0.2 0.2 0.1
路线二 0.3 0.5 0.1 0.1
则下列说法正确的是( )
A.任选一条路线,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件
B.从所需的平均时间看,路线一比路线二更节省时间
C.如果要求在45分钟以内从家赶到公司,小张应该走路线一
D.若小张上、下班走不同路线,则所需时间之和大于100分钟的概率为0.04
解析:选BD “所需时间小于50分钟”与“所需时间为60分钟”是互斥而不对立事件,A错误;
路线一所需的平均时间为30×0.5+40×0.2+50×0.2+60×0.1=39(分),
路线二所需的平均时间为30×0.3+40×0.5+50×0.1+60×0.1=40(分),
所以从所需的平均时间看,路线一比路线二更节省时间,B正确;
路线一所需时间小于45分钟的概率为0.7,路线二所需时间小于45分钟的概率为0.8,小张应该选路线二,故C错误;
所需时间之和大于100分钟,则走路线一、路线二所需的时间可以为(50,60),(60,50)和(60,60)三种情况,
概率为0.2×0.1+0.1×0.1+0.1×0.1=0.04,故D正确.故选B、D.
12.如图,圆O的半径为1,六边形ABCDEF是圆O的内接正六边形,从A,B,C,D,E,F六点中任意取两点,并连接成线段,则下列结论正确的是( )
A.线段的长为1的概率是0.4
B.线段的长为2的概率是0.5
C.线段的长为的概率是0.4
D.线段的长不超过的概率是0.8
解析:选ACD 在A,B,C,D,E,F中任取两点的样本空间Ω={(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)},共15个样本点.线段的长为1的样本点有(A,B),(B,C),(C,D),(D,E),(E,F),(F,A),共有6个样本点,所以线段的长为1的概率P1==0.4,故A正确;线段的长为2的样本点有(A,D),(B,E),(C,F),共有3个样本点,所以线段的长为2的概率P2==0.2,故B不正确;线段的长为的样本点有(A,C),(A,E),(B,D),(B,F),(C,E),(D,F),共有6个样本点,所以线段的长为的概率P3==0.4,故C正确;线段的长不超过的概率是P1+P3=0.4+0.4=0.8,故D正确.综上,应选A、C、D.
三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.已知随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=0.3,P(C)=0.6,则P(A+B)=________.
解析:由题意知P(B)=1-P(C)=0.4,∴P(A+B)=P(A)+P(B)=0.3+0.4=0.7.
答案:0.7
14.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.
解析:此试验的样本空间Ω={(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲)}.记“甲,乙相邻而站”为事件A,则A={(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲)},所以n(A)=4,
从而甲、乙两人相邻而站的概率为P(A)==.
答案:
15.两个袋中各装有写着数字0,1,2,3,4,5的6张卡片,若从每个袋中任意取一张卡片,则取出的两张卡片上数字之和大于8的概率为________.
解析:从每个袋中任意取一张卡片,共有6×6=36个等可能出现的样本点.
记A为事件“和等于9”,包含(4,5),(5,4),共2个样本点,所以P(A)==;
记B为事件“和等于10”,包含(5,5),共1个样本点,所以P(B)=.
又A与B彼此互斥,故取出的两张卡片上数字之和大于8的概率为P(A)+P(B)=+=.
答案:
16.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.
解析:设从甲袋中任取一个球,事件A为“取得白球”,则事件为“取得红球”,从乙袋中任取一个球,事件B为“取得白球”,则事件为“取得红球”.
因为事件A与B相互独立,所以事件与相互独立.
所以从每袋中任取一个球,取得同色球的概率为
P(AB∪)=P(AB)+P()=P(A)P(B)+P()·P()=×+×=.
答案:
四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分10分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记事件A表示“a+b=2”,求事件A的概率.
解:(1)由题意可知:=,解得n=2.
(2)记标号为0和1的小球分别为0,1,标号为2的小球分别为21,22,不放回地随机抽取2个小球的样本空间Ω={(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21)},共12个,事件A包含的样本点为:(0,21),(0,22),(21,0),(22,0),共4个.故P(A)==.
18.(本小题满分12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.
解:(1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的样本空间Ω1={(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,B3),(A2,A3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(B1,B2),(B1,B3),(B2,B3)},共15个样本点.
设所选两个国家都是亚洲国家为事件A,则A={(A1,A2),(A1,A3),(A2,A3)},共3个样本点,
则所求事件的概率P(A)==.
(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的样本空间Ω2={(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3)},共9个样本点.
设包括A1但不包括B1为事件B,则B={(A1,B2),(A1,B3)},共2个样本点,则所求事件的概率P(B)=.
19.(本小题满分12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) 0 1 000 2 000 3 000 4 000
车辆数 500 130 100 150 120
(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.
解:(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)==0.15,P(B)==0.12.
因为投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元或4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.
(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆).
所以样本车辆中新司机获赔金额为4 000元的频率为=0.24,由频率估计概率得P(C)=0.24.
20.(本小题满分12分)某部门组织甲、乙两人破译一个密码,每人能否破译该密码相互独立.已知甲、乙各自独立破译出该密码的概率分别为,.
(1)求他们恰有一人破译出该密码的概率;
(2)求他们破译出该密码的概率;
(3)现把乙调离,甲留下,并要求破译出该密码的概率不低于80%,那么至少需要再增添几个与甲水平相当的人?
解:记“甲破译出密码”为事件A,“乙破译出密码”为事件B,则P(A)=,P(B)=.
(1)“甲、乙两人中恰有一人破译出该密码”,包括“甲破译出而乙没有破译出”和“乙破译出而甲没有破译出”两种情况,
则P(A+B)=P(A)P()+P()P(B)=×+×=.
(2)“他们破译出该密码”的对立事件为“他们没有破译出密码”,即“甲没有破译出密码”与“乙没有破译出密码”同时发生,
所以他们破译出该密码的概率为1-P()P()=1-×=.
(3)设共需要n(n∈N*)个与甲水平相当的人,则有1-n≥80%,即n≥5,所以n≥4.
故至少需要再增添3个与甲水平相当的人.
21.(本小题满分12分)某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题,已知甲家庭回答对这道题的概率是,甲、丙两个家庭都回答错的概率是,乙、丙两个家庭都回答对的概率是.若各家庭回答是否正确互不影响.
(1)求乙、丙两个家庭各自回答对这道题的概率;
(2)求甲、乙、丙三个家庭中不少于2个家庭回答对这道题的概率.
解:(1)记“甲答对这道题”“乙答对这道题”“丙答对这道题”分别为事件A,B,C,则P(A)=,且有
即
所以P(B)=,P(C)=.
(2)有0个家庭回答对的概率为p0=P( )=P()·P()·P()=[1-P(A)][1-P(B)][1-P(C)]=××=,
有1个家庭回答对的概率为p1=P(A +B+ C)=××+××+××=,
所以不少于2个家庭回答对这道题的概率为
p=1-p0-p1=1--=.
22.(本小题满分12分)某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获得利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.
(1)根据频率分布直方图估计这个开学季内市场需求量x的众数和平均数;
(2)将y表示为x的函数;
(3)根据频率分布直方图估计利润y不少于4 000元的概率.
解:(1)由频率分布直方图得,这个开学季内市场需求量x的众数是150盒,
需求量在[100,120)内的频率为0.005 0×20=0.1,
需求量在[120,140)内的频率为0.010 0×20=0.2,
需求量在[140,160)内的频率为0.015 0×20=0.3,
需求量在[160,180)内的频率为0.012 5×20=0.25,
需求量在[180,200]内的频率为0.007 5×20=0.15.
则平均数=110×0.1+130×0.2+150×0.3+170×0.25+190×0.15=153(盒).
(2)因为每售出1盒该产品获得利润30元,未售出的产品,每盒亏损10元,
所以当100≤x<160时,y=30x-10(160-x)=40x-1 600,当160≤x≤200时,y=160×30=4 800,
所以y=
(3)因为利润y不少于4 000元,
所以当100≤x<160时,
由40x-1 600≥4 000,解得x≥140,此时140≤x<160.
当160≤x≤200时,y=4 800>4 000恒成立,
所以由(1)知利润y不少于4 000元的概率P=1-0.1-0.2=0.7.
PAGE
10概率
(时间:120分钟 满分:150分)
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.某个地区从某年起几年内的新生婴儿数及其中的男婴数如下表:
时间范围 1年内 2年内 3年内 4年内
新生婴儿数 5 544 9 013 13 520 17 191
男婴数 2 716 4 899 6 812 8 590
这一地区男婴出生的概率约是( )
A.0.4 B.0.5
C.0.6 D.0.7
2.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )
A.0.3 B.0.4
C.0.6 D.0.7
3.有一个容量为66的样本,数据的分组及各组的频数如下:
[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9
[23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12
[35.5,39.5) 7 [39.5,43.5) 3
根据样本的频率分布估计大于或等于31.5的数据约占( )
A. B.
C. D.
4.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若每局中甲、乙两队获胜的概率相同,则甲队获得冠军的概率为( )
A. B.
C. D.
5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )
A. B.
C. D.
6.甲、乙两位同学进行乒乓球比赛,甲获胜的概率为0.4.现采用随机模拟的方法估计这两位同学打3局比赛甲恰好获胜2局的概率;先利用计算器产生0到9之间的取整数值的随机数,用1,2,3,4表示甲获胜,用5,6,7,8,9,0表示乙获胜,再以每3个随机数为1组,代表3局比赛的结果.经随机模拟产生了如下30组随机数:
102 231 146 027 590 763 245 207 310 386
350 481 337 286 139 579 684 487 370 175
772 235 246 487 569 047 008 341 287 114
据此估计,这两位同学打3局比赛甲恰好获胜2局的概率为( )
A. B.
C. D.
7.某市创建全国文明城市工作验收时,有关部门对某校高二年级6名学生进行了问卷调查,6人得分分别为5,6,7,8,9,10.把这6名学生的得分看成一个总体,如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为( )
A. B.
C. D.
8.在如图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是( )
A. B.
C. D.
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)
9.已知事件A,B,且P(A)=0.5,P(B)=0.2,则下列结论正确的是( )
A.如果B A,那么P(A∪B)=0.2,P(AB)=0.5
B.如果A与B互斥,那么P(A∪B)=0.7,P(AB)=0
C.如果A与B相互独立,那么P(A∪B)=0.7,P(AB)=0
D.如果A与B相互独立,那么P()=0.4,P(A)=0.4.
10.已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有五个相同的小球,标号为1,2,3,5,6.现从甲罐、乙罐中分别随机抽取1个小球,记事件A=“抽取的两个小球标号之和大于5”,事件B=“抽取的两个小球标号之积大于8”,则( )
A.事件A发生的概率为
B.事件A∪B发生的概率为
C.事件A∩B发生的概率为
D.从甲罐中抽到标号为2的小球的概率为
11.小张上班从家到公司开车有两条路线,所需时间(单位:分)随交通堵塞状况有所变化,其概率分布如下表所示.
所需时间/分 30 40 50 60
路线一 0.5 0.2 0.2 0.1
路线二 0.3 0.5 0.1 0.1
则下列说法正确的是( )
A.任选一条路线,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件
B.从所需的平均时间看,路线一比路线二更节省时间
C.如果要求在45分钟以内从家赶到公司,小张应该走路线一
D.若小张上、下班走不同路线,则所需时间之和大于100分钟的概率为0.04
12.如图,圆O的半径为1,六边形ABCDEF是圆O的内接正六边形,从A,B,C,D,E,F六点中任意取两点,并连接成线段,则下列结论正确的是( )
A.线段的长为1的概率是0.4
B.线段的长为2的概率是0.5
C.线段的长为的概率是0.4
D.线段的长不超过的概率是0.8
三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.已知随机事件A,B,C中,A与B互斥,B与C对立,且P(A)=0.3,P(C)=0.6,则P(A+B)=________.
14.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.
15.两个袋中各装有写着数字0,1,2,3,4,5的6张卡片,若从每个袋中任意取一张卡片,则取出的两张卡片上数字之和大于8的概率为________.
16.甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球.从每袋中任取一个球,则取得同色球的概率为________.
四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本小题满分10分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记事件A表示“a+b=2”,求事件A的概率.
18.(本小题满分12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.
19.(本小题满分12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) 0 1 000 2 000 3 000 4 000
车辆数 500 130 100 150 120
(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.
20.(本小题满分12分)某部门组织甲、乙两人破译一个密码,每人能否破译该密码相互独立.已知甲、乙各自独立破译出该密码的概率分别为,.
(1)求他们恰有一人破译出该密码的概率;
(2)求他们破译出该密码的概率;
(3)现把乙调离,甲留下,并要求破译出该密码的概率不低于80%,那么至少需要再增添几个与甲水平相当的人?
21.(本小题满分12分)某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题,已知甲家庭回答对这道题的概率是,甲、丙两个家庭都回答错的概率是,乙、丙两个家庭都回答对的概率是.若各家庭回答是否正确互不影响.
(1)求乙、丙两个家庭各自回答对这道题的概率;
(2)求甲、乙、丙三个家庭中不少于2个家庭回答对这道题的概率.
22.(本小题满分12分)某大学生在开学季准备销售一种文具盒进行试创业,在一个开学季内,每售出1盒该产品获得利润30元,未售出的产品,每盒亏损10元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示.该同学为这个开学季购进了160盒该产品,以x(单位:盒,100≤x≤200)表示这个开学季内的市场需求量,y(单位:元)表示这个开学季内经销该产品的利润.
(1)根据频率分布直方图估计这个开学季内市场需求量x的众数和平均数;
(2)将y表示为x的函数;
(3)根据频率分布直方图估计利润y不少于4 000元的概率.
PAGE
10