2021年江苏省苏州市太仓市提前招生选拔数学试卷(Word版 无答案)

文档属性

名称 2021年江苏省苏州市太仓市提前招生选拔数学试卷(Word版 无答案)
格式 docx
文件大小 88.4KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2022-01-02 15:31:39

图片预览

文档简介

2021年江苏省苏州市太仓市提前招生选拔数学试卷
一、选择题(共8小题,满分40分,每小题5分)
1.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A与∠1和∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是(  )
A.3∠A=2∠1﹣∠2 B.2∠A=2(∠1﹣∠2)
C.2∠A=∠1﹣∠2 D.∠A=∠1﹣∠2
2.若x>y+1,a<3,则(  )
A.x>y+2 B.x+l>y+a C.ax>ay+a D.x+2>y+a
3.将一张三角形纸片按如图步骤①至④折叠两次得图⑤,然后剪出图⑤中的阴影部分,则阴影部分开铺平后的图形是(  )
A.菱形 B.直角三角形 C.矩形 D.等腰三角形
4.设一元二次方程(x﹣2)(x﹣3)﹣p2=0的两实根分别为α、β(α<β),则α、β满足(  )
A.2<α<3≤β B.α≤2且β≥3 C.α≤2<β<3 D.α<2且β>3
5.如图,△ABC中,点D为边BC上的点,点E、F分别是边AB、AC上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则(  )
A.m>1,n>1,则2S△AEF>S△ABD
B.m<1,n<1,则2S△AEF>S△ABD
C.m>1,n<1,则2S△AEF<S△ABD
D.m<1,n>1,则2S△AEF<S△ABD
6.已知a,b为实数,且a﹣b=﹣4,a≥﹣3b,小红和小慧分别得出自己的结论,小红:点(a,b)必在第二象限:小慧:有最大值为3.则对于他们的说法你的判断是(  )
A.两人说的都对
B.两个说的都不对
C.小红说的不对,小慧说的对
D.小红说的对,小慧说的不对
7.二次函数y1=x2第一象限的图象上有两点A(a,k),B(b,k+1),关于二次函数y2=x2x(m为任意实数)与x轴交点个数判断错误的是((  )
A.若m=1,则y2与x轴可能没有交点
B.若m,则y2与x轴必有2个交点
C.若m=﹣1,则y2与x轴必有2个交点
D.若m,则y2与x轴必有2个交点
8.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过O点作EF∥BC交AB于点E,交AC于点F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°∠A:③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEFmn,正确的结论有(  )个.
A.1个 B.2个 C.3个 D.4个
二、填空题(共6小题,满分30分,每小题5分)
9.已知a+b=3,且a﹣b=﹣1,则a2+b2=   .
10.无论a取何值时,点P(a﹣1,2a﹣3)都在直线l上,Q(m,n)是直线l上的点,那么4m﹣2mn+7的值是    .
11.某超市在元旦期间推出如下优惠方案:
(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元打九折;(3)一次性购物超过300元一律打八五折.元旦这天,小明和妈妈在该超市购物后分别自行付款80元和252元,如果小明和妈妈合作一次性付款,则应付款    元.
12.已知关于x的不等式组的整数解有且只有2个,则m的取值范围是    .
13.如图,在直角坐标系中,第一象限内的点A,B都在反比例函数y的图象上,横坐标分别是3和1,点C在x轴的正半轴上,满足AC⊥BC.且BC=2AC,则k的值是    .
14.如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是    ,且最大圆的面积是    dm2.
三、解答题(共4小题,1517题每题12分,18题14分,满分50分)
15.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟,y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.
16.如图,点O为正方形ABCD的中心.DE=AG,连接EG,过点O作OF⊥EG交AD于点F.
(1)连接EF,△EDF的周长与AD的长有怎样的数量关系,并证明;
(2)连接OE,求∠EOF的度数:
(3)若AF:CE=m,OF:OE=n,求证:m=n2.
17.在平面直角坐标系中,设二次函数y=ax2+bx﹣3a(a,b是实数,a≠0).
(1)判断该函数图象与x轴的交点个数,并说明理由;
(2)若该函数图象的对称轴为直线x=1,A(x1,y1),B(x2,y2)为函数y图象上的任意两点,其中x1<x2,求当x1,x2为何值时,y1=y2=5a;
(3)若该函数图象的顶点在第二象限,且过点(1,1),当a<b时,求2a+b的取值范围.
18.如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.
(1)若∠ABD=α,求∠BDC(用α表示);
(2)过点C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);
(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长.
同课章节目录