2021-2022学年鲁教版(五四制)八年级数学上册5.3三角形的中位线 期末综合复习训练(Word版含答案)

文档属性

名称 2021-2022学年鲁教版(五四制)八年级数学上册5.3三角形的中位线 期末综合复习训练(Word版含答案)
格式 doc
文件大小 333.3KB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2022-01-05 20:12:49

图片预览

文档简介

2021-2022学年鲁教版八年级数学上册《5-3三角形的中位线》期末综合复习训练(附答案)
1.如图,△ABC中,D,E分别是边AB,AC的中点.若DE=2,则BC=(  )
A.2 B.3 C.4 D.5
2.如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为(  )
A.25cm B.50cm C.75cm D.100cm
3.如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(  )
A.8 B.10 C.12 D.14
4.如图,在△ABC中,AB=4,AC=5,BC=6,点D,E,F分别是AB,BC,CA的中点,连结DE,EF,则四边形ADEF的周长为(  )
A.6 B.9 C.12 D.15
5.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是(  )
A.8 B.9 C.10 D.12
6.如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为(  )
A.1cm2 B.1.5cm2 C.2cm2 D.3cm2
7.在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为(  )
A.2 B.2 C.4 D.4
8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:
①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;
⑤∠APB的大小.其中会随点P的移动而变化的是(  )
A.②③ B.②⑤ C.①③④ D.④⑤
9.如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为   .
10.如图,每个小正方形的边长为1,在△ABC中,点D、E分别为AB、AC的中点,则线段DE的长为   .
11.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为   .
12.如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,则线段DH的长为   .
13.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为   .
14.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为   .
15.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为   .
16.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为   .
17.如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF,若AB=6,则DF的长为   .
18.一个三角形的周长是12cm,则这个三角形各边中点围成的三角形的周长为   .
19.如图,已知△ABC中,点M是BC边上的中点,AN平分∠BAC,BN⊥AN于点N,若AB=8,MN=2,则AC的长为   .
20.在△ABC中,点M是边BC的中点,AD平分∠BAC,BD⊥AD,BD的延长线交AC于点E,AB=12,AC=20.
(1)求证:BD=DE;
(2)求DM的长.
21.如图,点D、E、F分别是△ABC各边中点.求证:四边形ADEF是平行四边形.
22.已知:△ABC中,D是BC上的一点,E、F、G、H分别是BD、BC、AC、AD的中点,
求证:EG、HF互相平分.
23.在△ABC中,E是AC边上一点,线段BE垂直∠BAC的平分线于D点,点M为BC边的中点,连接DM.
(1)求证:DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的长.
24.如图,已知AO是△ABC的∠A的平分线,BD⊥AO的延长线于D,E是BC的中点.
求证:DE=(AB﹣AC)
25.△ABC的中线BD、CE相交于O,F,G分别是BO、CO的中点,求证:EF∥DG,且EF=DG.
参考答案
1.解:∵D,E分别是边AB,AC的中点,
∴DE是△ABC的中位线,
∴BC=2DE=2×2=4.
故选:C.
2.解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,
∴OD是△ABC的中位线,
∴AC=2OD=2×50=100cm.
故选:D.
3.解:∵点D、E分别是边AB,BC的中点,
∴DE是三角形BC的中位线,AB=2BD,BC=2BE,
∴DE∥BC且DE=AC,
又∵AB=2BD,BC=2BE,
∴AB+BC+AC=2(BD+BE+DE),
即△ABC的周长是△DBE的周长的2倍,
∵△DBE的周长是6,
∴△ABC的周长是:
6×2=12.
故选:C.
4.解:∵点D,E,F分别是AB,BC,CA的中点,
∴DE=AC=2.5,AF=AC=2.5,EF=AB=2,AD=AB=2,
∴四边形ADEF的周长=AD+DE+EF+AF=9,
故选:B.
5.解:连接AE,并延长交CD于K,
∵AB∥CD,
∴∠BAE=∠DKE,∠ABD=∠EDK,
∵点E、F、G分别是BD、AC、DC的中点.
∴BE=DE,
∴△AEB≌△KED(AAS),
∴DK=AB,AE=EK,EF为△ACK的中位线,
∴EF=CK=(DC﹣DK)=(DC﹣AB),
∵EG为△BCD的中位线,∴EG=BC,
又∵FG为△ACD的中位线,∴FG=AD,
∴EG+GF=(AD+BC),
∵两腰和是12,即AD+BC=12,两底差是6,即DC﹣AB=6,
∴EG+GF=6,FE=3,
∴△EFG的周长是6+3=9.
故选:B.
6.解:连接MN,作AF⊥BC于F.
∵AB=AC,
∴BF=CF=BC=×8=4,
在Rt△ABF中,AF==,
∵M、N分别是AB,AC的中点,
∴MN是中位线,即平分三角形的高且MN=8÷2=4,
∴NM=BC=DE,
∴△MNO≌△EDO,O也是ME,ND的中点,
∴阴影三角形的高是AF÷2=1.5÷2=0.75,
∴S阴影=4×0.75÷2=1.5.故选B.
7.解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,
∴AB=2BC=8,∠ABC=60°,
∵E为AB边上的中点,
∴AE=EB=4,
∵D、E分别为AC、AB边上的中点,
∴DE∥BC,
∴∠AED=∠AED=60°,
∴∠BEF=∠ABC=60°,
在Rt△AED中,∠A=30°,
∴AE=2DE,
∵EF=2DE,
∴AE=EF,
∴△BEF为等边三角形,
∴BF=BE=4,
故选:C.
8.解:∵点A,B为定点,点M,N分别为PA,PB的中点,
∴MN是△PAB的中位线,
∴MN=AB,
即线段MN的长度不变,故①错误;
PA、PB的长度随点P的移动而变化,
所以,△PAB的周长会随点P的移动而变化,故②正确;
∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,
∴△PMN的面积不变,故③错误;
直线MN,AB之间的距离不随点P的移动而变化,故④错误;
∠APB的大小点P的移动而变化,故⑤正确.
综上所述,会随点P的移动而变化的是②⑤.
故选:B.
9.解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,
∴以此类推:△A5B5C5的周长为△A1B1C1的周长的,
∴则△A5B5C5的周长为(7+4+5)÷16=1.
故答案为:1
10.解:由勾股定理可知:BC==.
∵点D、E分别为AB、AC的中点,
∴DE=BC=.
故答案为:.
11.解:∵M、N分别是边AD、BC的中点,AB=8,AD=12,
∴AM=DM=6,
∵四边形ABCD为矩形,
∴∠A=∠D=90°,
∴BM=CM=10,
∵E、F分别是线段BM、CM的中点,
∴EM=FM=5,
∴EN,FN都是△BCM的中位线,
∴EN=FN=5,
∴四边形ENFM的周长为5+5+5+5=20,
故答案为20.
12.解:∵AE为△ABC的角平分线,CH⊥AE,
∴△ACF是等腰三角形,
∴AF=AC,
∵AC=3,
∴AF=AC=3,HF=CH,
∵AD为△ABC的中线,
∴DH是△BCF的中位线,
∴DH=BF,
∵AB=5,
∴BF=AB﹣AF=5﹣3=2.
∴DH=1,
故答案为:1.
13.解:如图,∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,
∴B(0,4),C(0,﹣5),
则BC=9.
又∵点E,F分别为线段AB、AC的中点,
∴EF是△ABC的中位线,
∴EF=BC=.
故答案是:.
14.解:在Rt△ABC中,AC===10,
∵DE是△ABC的中位线,
∴DE=BC=3,DE∥BC,EC=AC=5,
∴∠EFC=∠FCM,
∵CF是∠ACM的平分线,
∴∠ECF=∠FCM,
∴∠EFC=∠ECF,
∴EF=EC=5,
∴DF=DE+EF=3+5=8,
故答案为:8.
15.解:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
又∵AC+BD=24厘米,
∴OA+OB=12cm,
∵△OAB的周长是18厘米,
∴AB=6cm,
∵点E,F分别是线段AO,BO的中点,
∴EF是△OAB的中位线,
∴EF=AB=3cm.
故答案为:3cm.
16.解:∵ED=EM,MF=FN,
∴EF=DN,
∴DN最大时,EF最大,
∵N与B重合时DN最大,
此时DN=DB==6,
∴EF的最大值为3.
故答案为3.
17.解:延长FE交AB于H,
∵E为AC的中点,EF∥CD,
∴H为AB的中点,
即AH=BH,EH=BC,
∵AB=6,
∴BH=3,
∵CD=BC,EF=2CD,EH=BC,
∴FH=BD,
∵FH∥BD,
∴四边形BHFD是平行四边形,
∴DF=BH=3,
故答案为:3.
18.解:根据题意,画出图形如图示,
∵点D、E、F分别是AB、AC、BC的中点,
∴DE、DF、EF都是△ABC的中位线,
∴DE=BC,DF=AC,EF=AB,
∵△ABC的周长是12cm,
∴AB+CB+AC=12cm,
∴DE+DF+FE=24÷2=6(cm).
故答案是:6cm.
19.解:如图,延长BN交AC于D,
在△ANB和△AND中,

∴△ANB≌△AND(ASA),
∴AD=AB=8,BN=ND,
又∵M是△ABC的边BC的中点,
∴MN是△BCD的中位线,
∴DC=2MN=4,
∴AC=AD+CD=8+4=12,
故答案为:12.
20.(1)证明:∵AD平分∠BAC,
∴∠BAD=∠DAE.
∵AD⊥BD,
∴∠ADB=∠ADE=90°.
在△ADB与△ADE中,
∴△ADB≌△ADE,
∴BD=DE.
(2)∵△ADB≌△ADE,
∴AE=AB=12,
∴EC=AC﹣AE=8.
∵M是BC的中点,BD=DE,
∴DM=EC=4.
21.证明:∵D、E分别为AB、BC的中点,
∴DE∥AC,
∵E、F分别为BC、AC中点,
∴EF∥AB,
∴四边形ADEF是平行四边形.
22.证明:连接EH,GH,GF,
∵E、F、G、H分别是BD、BC、AC、AD的中点,
∴AB∥EH∥GF,GH∥BC,∴GH∥BF.
∴四边形EHGF为平行四边形.
∵GE,HF分别为其对角线,
∴EG、HF互相平分.
23.(1)证明:在△ADB和△ADE中,

∴△ADB≌△ADE(ASA)
∴AE=AB,BD=DE,
∵BD=DE,BM=MC,
∴DM=CE;
(2)解:在Rt△ADB中,AB==10,
∴AE=10,
由(1)得,CE=2DM=4,
∴AC=CE+AE=14.
24.证明:延长AC、BD交于点F,
∵在△ABD和△AFD中,

∴△ABD≌△AFD(ASA),
∴AB=AF,BD=DF,
又∵E是BC的中点,即ED是△BCF中位线,
∴DE=CF=(AB﹣AC).
25.证明:
连接DE,FG,
∵BD、CE是△ABC的中线,
∴D,E是AB,AC边中点,
∴DE∥BC,DE=BC,
同理:FG∥BC,FG=BC,
∴DE∥FG,DE=FG,
∴四边形DEFG是平行四边形,
∴EF∥DG,EF=DG.