中小学教育资源及组卷应用平台
第二十六章 反比例函数
26.1 反比例函数
26.1.1 反比例函数
学习目标:
1. 理解并掌握反比例函数的概念. (重点)
2. 从实际问题中抽象出反比例函数的概念,能根据已知条件确定反比例函数的解析式. (重点、难点)
一、知识链接
下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.
(1) 京沪线铁路全程为146 ( http: / / www.21cnjy.com )3 km,某次列车的平均速度v (单位:km/h) 随此次列车的全程运行时间 t (单位:h) 的变化而变化;21教育网
(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草坪,草坪的长 y (单位:m) 随宽 x (单位:m)的变化而变化;21cnjy.com
(3) 已知北京市的总面积为1.68×104 km2 ,人均占有面积 S (km2/人) 随全市总人口 n (单位:人) 的变化而变化.www.21-cn-jy.com
1、要点探究
探究点1:反比例函数的概念
问题:观察以上三个解析式,你觉得它们有什么共同特点?
【要点归纳】一般地,形如 (k为常数,k ≠ 0) 的函数,叫做反比例函数,其中 x 是自变量,y 是函数.2·1·c·n·j·y
思考1:反比例函数(k≠0) 的自变量 x 的取值范围是什么?
( http: / / www.21cnjy.com )
思考2:反比例函数除了可以用(k ≠ 0) 的形式表示,还有没有其他表达方式?
【要点归纳】反比例函数有三种表达方式:①(k ≠ 0);②(k ≠ 0);③xy=k(k ≠ 0).
【针对训练】下列函数是不是反比例函数?若是,请指出 k 的值.
①y=3x-1;②;③;④;⑤.
【典例精析】
例1 已知函数是反比例函数,求 m 的值.
【方法总结】已知某个函数为反比例函数,只需要根据反比例函数的 x 的次数为-1,且系数不等于0.
【针对训练】1. 当m= 时,是反比例函数.
2. 已知函数是反比例函数,则k 必须满足 .
探究点2:确定反比例函数的解析式
例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 x=4 时,求 y 的值.
【方法总结】用待定系数法求反比例函数解析式的一般步骤:①设出含有待定系数的反比例函数解析式,
②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数; ④写出反比例函数解析式.21·cn·jy·com
【针对训练】已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 x = 7 时,求 y 的值.
探究点3:建立简单的反比例函数模型
例3 人的视觉机能受运动速度的影 ( http: / / www.21cnjy.com )响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄. 当车速为 50 km/h 时,视野为 80 度,如果视野 f (度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的函数解析式,并计算当车速为100 km/h 时,视野的度数.【来源:21·世纪·教育·网】
例4 如图,已知菱形 ABCD 的面积为 ( http: / / www.21cnjy.com )180平方厘米,设它的两条对角线 AC,BD的长分别为x,y. 写出变量 y与 x 之间的函数关系式,并指出它是什么函数.21·世纪*教育网
( http: / / www.21cnjy.com )
二、课堂小结
( http: / / www.21cnjy.com )
1. 下列函数中,y 是 x 的反比例函数的是 ( )
A. B. C. D.
2. 下列实例中,x 和 y 成反 ( http: / / www.21cnjy.com )比例函数关系的有 ( )
① x人共饮水10 kg,平均 ( http: / / www.21cnjy.com )每人饮水 y kg;②底面半径为 x m,高为 y m的圆柱形水桶的体积为10 m ;③用铁丝做一个圆,铁丝的长为 x cm,做成圆的半径为 y cm;④在水龙头前放满一桶水,出水的速度为 x,放满一桶水的时间 y21世纪教育网版权所有
A. 1个 B. 2个 C. 3个 D. 4个www-2-1-cnjy-com
3. 填空:
(1) 若是反比例函数,则 m 的取值范围是 .
(2) 若是反比例函数,则m的取值范围是 .
(3) 若是反比例函数,则m的值是 .
4. 已知变量 y 与 x 成反比例,且当 x = 3时,y =-4.
(1) 写出 y 关于 x 的函数解析式;
(2) 当 y=6 时,求 x 的值.
5. 小明家离学校 1000 m,每天他往 ( http: / / www.21cnjy.com )返于两地之间,有时步行,有时骑车.假设小明每天上学时的平均速度为 v ( m/min ),所用的时间为 t ( min ).2-1-c-n-j-y
(1) 求变量 v 和 t 之间的函数关系式;
(2) 小明星期二步行上学用了 25 min,星期三骑自行车上学用了 8 min,那么他星期三上学时的平均速度比星期二快多少?21*cnjy*com
能力提升:
6. 已知 y = y1+y2,y1与 ( ( http: / / www.21cnjy.com )x-1) 成正比例,y2 与 (x + 1) 成 反比例,当 x=0 时,y =-3;当 x =1 时,y = -1,求:【来源:21cnj*y.co*m】
(1) y 关于 x 的关系式;
(2) 当 x =时,求y 的值.
参考答案
自主学习
一、知识链接
解:(1) (2) (3)
合作探究
一、要点探究
探究点1:反比例函数的概念
【针对训练】
解:②是,k=3;④是.
【典例精析】
例1 解:因为是反比例函数,所以解得m =-3.
【针对训练】1. ±1 2. k≠2且k≠-1 .
探究点2:确定反比例函数的解析式
例2 解:(1)设. 因为当 x=2时,y=6,所以有,解得 k =12. 因此.
(2)把 x=4 代入,得.
【针对训练】解:(1) 设,因为当 x = 3 时,y =4 ,
所以有,解得 k =16,因此.
(2) 当 x = 7 时,.
探究点3:建立简单的反比例函数模型
例3 解:设. 由题意知,当 v =50时,f =80,所以解得 k =4000.
因此 ,当 v=100 时,f =40.所以当车速为100 km/h 时视野为40度.
例4 解:因为菱形的面积等于两条对角线长乘积的一半,所以.
所以变量 y与 x 之间的关系式为,它是反比例函数.
当堂检测
1. A 2.B
3.(1) m≠1 (2) m≠0且m≠-2 (3) -1
4. 解:(1) 设. 因为当 x = 3时,y =-4,所以有 ,解得 k =-12.
因此,y 关于 x 的函数解析式为
(2) 把 y=6 代入,得,解得 x =-2.
5. 解:(1)(t>0).
(2)当 t=25 时,;当 t=8 时,,.
125-40=85 ( m/min ).
答:他星期三上学时的平均速度比星期二快 85 m/min.
能力提升:
6. 解:(1)设 y1 = k1(x-1) (k1≠0),(k2≠0),
则 y = k1(x-1) +, .
∵ x = 0 时,y =-3;x =1 时,y = -1,∴,
∴k1=1,k2=-2.∴y = x-1
(2)把 x =代入 (1) 中函数关系式,得 y =.
自主学习
合作探究
当堂检测
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)