北师大版九年级数学上学期期末章节总复习 第三章 概率的进一步认识 2021中考真题专训A(含答案)
姓名:___________班级:___________
一、单选题
1.(2021·浙江杭州·中考真题)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )
A. B. C. D.
2.(2021·山东临沂·中考真题)现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是( )
A. B. C. D.
3.(2021·甘肃兰州·中考真题)如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为( )
A. B. C. D.
4.(2021·黑龙江牡丹江·中考真题)妙妙上学经过两个路口,如果每个路口可直接通过和需等待的可能性相等,那么妙妙上学时在这两个路口都直接通过的概率是( )
A. B. C. D.
5.(2021·湖北武汉·中考真题)学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是( )
A. B. C. D.
6.(2021·湖南长沙·中考真题)有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是( )
A. B. C. D.
7.(2021·四川乐山·中考真题)在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是( ).
类型 健康 亚健康 不健康
数据(人) 32 7 1
A.32 B.7 C. D.
8.(2021·山东威海·中考真题)在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为( )
A. B. C. D.
9.(2021·山东东营·中考真题)经过某路口的汽车,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两车经过该路口,恰好有一车直行,另一车左拐的概率为( )
A. B. C. D.
10.(2021·湖北恩施·中考真题)工厂从三名男工人和两名女工人中,选出两人参加技能大赛,则这两名工人恰好都是男工人的概率为( )
A. B. C. D.
二、解答题
11.(2021·贵州遵义·中考真题)现有A,B两个不透明的袋子,A袋的4个小球分别标有数字1,2,3,4;B袋的3个小球分别标有数字1,2,3.(每个袋中的小球除数字外,其它完全相同.)
(1)从A,B两个袋中各随机摸出一个小球,则两个小球上数字相同的概率是 ;
(2)甲、乙两人玩摸球游戏,规则是:甲从A袋中随机摸出一个小球,乙从B袋中随机摸出一个小球,若甲、乙两人摸到小球的数字之和为奇数时,则甲胜;否则乙胜,用列表或树状图的方法说明这个规则对甲、乙两人是否公平.
12.(2021·江苏连云港·中考真题)为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.
(1)如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是______;
(2)求所选代表恰好为1名女生和1名男生的概率.
13.(2021·江苏无锡·中考真题)将4张分别写有数字1、2、3、4的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率.(请用“画树状图”或“列表”等方法写出分析过程)
(1)取出的2张卡片数字相同;
(2)取出的2张卡片中,至少有1张卡片的数字为“3”.
14.(2021·湖北荆门·中考真题)为庆祝中国共产党建党100周年,某校拟举办主题为“学党史跟党走”的知识竞赛活动.某年级在一班和二班进行了预赛,两个班参加比赛的人数相同,成绩分为A、B、C、D四个等级,其等级对应的分值分别为100分、90分、80分、70分,将这两个班学生的最后等级成绩分析整理绘制成了如下的统计图.
(1)这次预赛中二班成绩在B等及以上的人数是多少?
(2)分别计算这次预赛中一班成绩的平均数和二班成绩的中位数;
(3)已知一班成绩A等的4人中有两个男生和2个女生,二班成绩A等的都是女生,年级要求从这两个班A等的学生中随机选2人参加学校比赛,若每个学生被抽取的可能性相等,求抽取的2人中至少有1个男生的概率.
15.(2021·辽宁本溪·中考真题)为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)本次被调查的学生共有________名;
(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为________,并把条形统计图补充完整;
(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.
16.(2021·山东东营·中考真题)为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A.“北斗卫星”;B.“5G时代”;C.“东风快递”;D.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成以下不完整的统计图,请根据统计图中的信息解答下列问题:
(1)九(1)班共有________名学生;
(2)补全折线统计图;
(3)D所对应扇形圆心角的大小为________;
(4)小明和小丽从A、B、C、D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.
17.(2021·甘肃武威·中考真题)一个不透明的箱子里装有3个红色小球和若干个白色小球,每个小球除颜色外其他完全相同,每次把箱子里的小球摇匀后随机摸出一个小球,记下颜色后再放回箱子里,通过大量重复实验后,发现摸到红色小球的频率稳定于0.75左右.
(1)请你估计箱子里白色小球的个数;
(2)现从该箱子里摸出1个小球,记下颜色后放回箱子里,摇匀后,再摸出1个小球,求两次摸出的小球颜色恰好不同的概率(用画树状图或列表的方法).
18.(2021·湖北黄石·中考真题)黄石是国家历史文化名城,素有“青铜故里、矿冶之都”的盛名.区域内矿冶文化旅游点有:A.铜绿山古铜矿遗址,B.黄石国家矿山公园,C.湖北水泥遗址博物馆,D.黄石园博园、矿博园.我市八年级某班计划暑假期间到以上四个地方开展研学旅游,学生分成四个小组,根据报名情况绘制了两幅不完整的统计图.
请根据图中信息,解答下列问题:
(1)全班报名参加研学旅游活动的学生共有______人,扇形统计图中A部分所对应的扇形圆心角是______;
(2)补全条形统计图;
(3)该班语文、数学两位学科老师也报名参加了本次研学旅游活动,他们随机加入A、B两个小组中,求两位老师在同一个小组的概率.
19.(2021·辽宁盘锦·中考真题)某校七、八年级各有500名学生,为了解该校七、八年级学生对党史知识的掌握情况,从七、八年级学生中各随机抽取15人进行党史知识测试,统计这部分学生的测试成绩(成绩均为整数,满分10分,8分及以上为优秀),相关数据统计、整理如下:七年级抽取学生的成绩:6,6,6,8,8,8,8,8,8,8,9,9,9,9,10;
(1)填空:=________,=________;
(2)根据以上数据,你认为该校七、八年级中,哪个年级的学生党史知识掌握得较好?请说明理由(写出一条即可);
(3)请估计七、八年级学生对党史知识掌握能够达到优秀的总人数;
(4)现从七、八年级获得10分的4名学生中随机抽取2人参加市党史知识竞赛,请用列表或画树状图法,求出被选中的2人恰好是七、八年级各1人的概率.
20.(2021·四川巴中·中考真题)为迎接建党100周年、巴中市组织了多形式的党史学习教育活动,某校开展了以“听党话、跟党走”为主题的知识竞赛,成绩以A、B、C、D四个等级呈现.现将九年级学生成绩统计如图所示.
(1)该校九年级共有 名学生,“D”等级所占圆心角的度数为 ;
(2)请将条形统计图补充完整;
(3)学校从获得满分的四位同学甲、乙、丙、丁中选2名同学参加全市现场党史知识竞赛,选取规则如下:在一个不透明的口袋中,装有4个大小质地均相同的小球,分别标有数字1、2、3、4.从中摸出两个小球,若两个数字之和为奇数,则选甲乙;若两个数字之和为偶数,则选丙丁,请用树状图或列表法说明此规则是否合理.
21.(2021·贵州毕节·中考真题)学完统计知识后,小明对同学们最近一周的睡眠情况进行随机抽样调查,得到他们每日平均睡眠时长(单位:小时)的一组数据,将所得数据分为四组(A:;B:;C:;D:),并绘制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)小明一共抽样调查了___________名同学;在扇形统计图中,表示D组的扇形圆心角的度数为___________;
(2)将条形统计图补充完整;
(3)小明所在学校共有I400名学生,估计该校最近一周大约有多少名学生睡眠时长不足8小时
(4)A组的四名学生是2名男生和2名女生,若从他们中任选2人了解最近一周睡眠时长不足8小时的原因,试求恰好选中1名男生和I名女生的概率.
22.(2021·山东潍坊·中考真题)从甲、乙两班各随机抽取10名学生(共20人)参加数学素养测试,将测试成绩分为如下的5组(满分为100分):A组:50≤x<60,B组:60≤x<70,C组:70≤x<80,D组:80≤x<90,E组:90≤x≤100,分别制成频数分布直方图和扇形统计图如图.
(1)根据图中数据,补充完整频数分布直方图并估算参加测试的学生的平均成绩(取各组成绩的下限与上限的中间值近似的表示该组学生的平均成绩);
(2)参加测试的学生被随机安排到4个不同的考场,其中小亮、小刚两名同学都参加测试;用树状图或列表法求小亮、小刚两名同学被分在不同考场的概率;
(3)若甲、乙两班参加测试的学生成绩统计如下:
甲班:62,64,66,76,76,77,82,83,83,91;
乙班:51,52,69,70,71,71,88,89,99,100.
则可计算得两班学生的样本平均成绩为x甲=76,x乙=76;样本方差为s甲2=80,s乙2=275.4.请用学过的统计知识评判甲、乙两班的数学素养总体水平并说明理由.
23.(2021·内蒙古鄂尔多斯·中考真题)某中学对九年级学生开展了“我最喜欢的鄂尔多斯景区”的抽样调查(每人只能选一项):A-动物园;B-七星湖;C-鄂尔多斯大草原;D-康镇;E-蒙古源流,根据收集的数据绘制了如图所示的两幅不完整的统计图,其中B对应的圆心角为,请根据图中信息解答下列问题.
(1)求抽取的九年级学生共有多少人?并补全条形统计图;
(2)扇形统计图中___________,表示D的扇形的圆心角是___________度;
(3)九年级准备在最喜欢A景区的5名学生中随机选择2名进行实地考察,这5名学生中有2名男生和3名女生,请用树状图或列表法求选出的2名学生都是女生的概率.
24.(2021·山东菏泽·中考真题)2021年5月,菏泽市某中学对初二学生进行了国家义务教育质量检测,随机抽取了部分参加15米折返跑学生的成绩,学生成绩划分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.根据图中提供的信息解答下列问题:
(1)请把条形统计图补充完整;
(2)合格等级所占百分比为______%;不合格等级所对应的扇形圆心角为______度;
(3)从所抽取的优秀等级的学生、、……中,随机选取两人去参加即将举办的学校运动会,请利用列表或画树状图的方法,求出恰好抽到、两位同学的概率.
25.(2021·四川凉山·中考真题)随着手机的日益普及,学生使用手机给学校管理和学生发展带来诸多不利影响,为了保护学生视力,防止学生沉迷网络和游戏,让学生在学校专心学习,促进学生身心健康发展,教育部办公厅于2021年1月15日颁发了《教育部办公厅关于加强中小学生手机管理工作的通知》,为贯彻《通知》精神、某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图.(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”)
请你根据统计图中所提供的信息解答下列问题:
(1)获奖总人数为______人,_______;
(2)请将条形统计图补充完整;
(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.
26.(2021·山东济宁·中考真题)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题:
(1)在这次调查中,“优秀”所在扇形的圆心角的度数是 ;
(2)请补全条形统计图;
(3)若该校九年级共有学生1200人,则估计该校“良好”的人数是 ;
(4)已知“不合格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率多少?
27.(2021·四川自贡·中考真题)为了弘扬爱国主义精神,某校组织了“共和国成就”知识竞赛,将成绩分为:A(优秀)、B(良好)、C(合格)、D(不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如下统计图.
(1)本次抽样调查的样本容量是_________,请补全条形统计图;
(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;
(3)该校共有2000名学生,请你估计该校竞赛成绩“优秀”的学生人数.
28.(2021·四川遂宁·中考真题)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出以下两幅不完整的统计图表,请根据统计图表回答下列问题:
类别 频数 频率
不了解 10 m
了解很少 16 0.32
基本了解 b
很了解 4 n
合计 a 1
(1)根据以上信息可知:a= ,b= ,m= ,n= ;
(2)补全条形统计图;
(3)估计该校1000名初中学生中“基本了解”的人数约有 人;
(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.
29.(2021·四川南充·中考真题)某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.
(1)求考生小红和小强自选项目相同的概率.
(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:
考生 自选项目 长跑 掷实心球
小红 95 90 95
小强 90 95 95
①补全条形统计图.
②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),分别计算小红和小强的体育中考成绩.
参考答案
1.C 2.D 3.B 4.A 5.C 6.A 7.D 8.C 9.A 10.C
11.解:(1)画树状图如图:
共有12个等可能的结果,其中两个数字相同的结果有3个,
∴两个小球上数字相同的概率是=,
故答案为:;
(2)这个规则对甲、乙两人是公平的.
画树状图如下:
由树状图知,共有12种等可能结果,其中两人摸到小球的数字之和为奇数有6种,两人摸到小球的数字之和为偶数的也有6种,
∴P甲获胜=P乙获胜=,
∴此游戏对双方是公平的.
12.
解:(1)∵已确定女生甲参加比赛,再从其余3名同学中随机选取1名有3种结果,其中恰好选中女生乙的只有1种,
∴恰好选中乙的概率为;
故答案为:;
(2)分别用字母A,B表示女生,C,D表示男生
画树状如下:
4人任选2人共有12种等可能结果,其中1名女生和1名男生有8种,
∴(1女1男).
答:所选代表恰好为1名女生和1名男生的概率是.
13.解:(1)画树状图如下:
∵一共16种等可能的结果,取出的2张卡片数字相同的结果有4种,
∴P(取出的2张卡片数字相同)=4÷16=;
(2)根据第(1)题的树状图,可知:一共16种等可能的结果,至少有1张卡片的数字为“3”有7种,
∴P=7÷16=.
14.(1)∵两个班参加比赛的人数相同,
∴由条形图可知二班参赛人数为20人,
∴由扇形围可知B等及以上的人数为;
(2)一班成绩的平均数为:,
二班100分的有20人,90分的有20人,80分的有20人,70分的有20人,
按从小到大顺序排列,中位数为80;
∴二班成绩的中位数为80;
(3)二班成绩A等的都是女生,
∴二班成绩A等人数为人:
将两个班成绩A等的6人分别记为A,B,C,D,E,F:其中A,B为一班两个男生.
∵每个学生被抽取的可能性相等,
∴从这两个班成绩A等的学生中随机选2人的所有情形如下:
AB AC AD AE AF BC BD BE BF CD CE CF DE DF EF共15种;
其中至少有1个男生的有AB AC AD AE AF BC BD BE BF共9种;
∴概率为.
15.解:(1);
(2)B项目的总人数为人,
∴“B项目”所对应的扇形圆心角的度数为,
补全条形统计图如下:
;
(3)列出表格如下:
小华 小光 小艳 小萍
小华 小华,小光 小华,小艳 小华,小萍
小光 小华,小光 小光,小艳 小光,小萍
小艳 小华,小艳 小光,小艳 小萍,小艳
小萍 小华,小萍 小光,小萍 小萍,小艳
共有12种情况,其中恰好小华和小艳的有2种,
∴P(恰好小华和小艳).
16.(1)20÷40%=50(人),
故答案为:50;
(2)50-10-20-5=15(人),
补全折线统计图如图:
;
(3),
故答案为:;
(4)列表如下:
小明 小丽 A B C D
A
B
C
D
由列表可知,一共有16种等可能的结果,他们选择相同主题的结果有4种,
所以P(相同主题).
17.解:(1)∵通过多次摸球试验后发现,摸到红球的频率稳定在0.75左右,
∴估计摸到红球的概率为0.75,
设白球有个,依题意得
解得,.
经检验:是原方程的解,且符合题意,
所以箱子里可能有1个白球;
(2)列表如下:
红 红 红 白
红 (红,红) (红,红) (红,红) (红,白)
红 (红,红) (红,红) (红,红) (红,白)
红 (红,红) (红,红) (红,红) (红,白)
白 (白,红) (白,红) (白,红) (白,白)
或画树状图如下:
∵一共有16种等可能的结果,两次摸出的小球颜色恰好不同的有:
(红,白)、(红,白)、(红,白)、(白,红)、(白,红)、(白,红)共6种.
∴两次摸出的小球恰好颜色不同的概率.
18.解:(1)全班报名参加研学旅游活动的学生共有:20÷40%=50,
扇形统计图中,表示A部分的扇形的圆心角是:360°×=108°,
故答案为:50,108;
(2)C组人数为:50-15-20-5=10,
补全的条形统计图,如图所示;
(3)根据题意画树状图如下:
共有4种等可能的结果,其中两位老师在同一个小组的结果有2种,
∴两人恰好选中同一个的概率为.
19.解:(1)由题意可知:=8, =8;
(2)七年级学生的党史知识掌握得较好,理由如下:
∵七年级和八年级的平均数相同,但是七年级的优秀率大于八年级的优秀率
∴七年级学生的党史知识掌握得较好;
(3)从现有样本估计全年级,七年级达到优秀的人数可能有500人×80%=400人,
八年级达到优秀的人数可能有500人×60%=300人,
所以两个年级能达优秀的总人数可能会有700人;
(4)把七年级的学生记做A,八年级的三名学生即为B、C、D,列表如下:
A B C D
A (A,B) (A,C) (A,D)
B (B,A) (B,C) (B,D)
C (C,A) (C,B) (C,D)
D (D,A) (D,B) (D,C)
由表知,一共有12种等可能性的结果,恰好每个年级都有一个的结果数是6,
两人中恰好是七八年级各1人的概率是 .
20.解:(1)该校九年级共有学生:150÷30%=500(名),
则D等级所占圆心角的度数为:360°×=36°,
故答案为:500,36°;
(2)B等级的人数为:500 150 100 50=200(名),
将条形统计图补充完整如下:
(3)此规则不合理,理由如下:
画树状图如图:
共有12种等可能的结果,选甲乙的结果有8种,选丙丁的结果有4种,
∴选甲乙的概率为=,选丙丁的概率为=,
∵>,
∴此规则不合理.
21.
解:(1)22÷55%=40(名)
所以,小明一共抽样调查了40名同学;
D组的扇形圆心角的度数为:
故答案为:40,18°;
(2)C组人数为:40-4-22-2=12(名)
补全条形统计图如下:
(3)(名)
所以,该校最近一周大约有140名学生睡眠时长不足8小时;
(4)用A和B表示男生,用C和D表示女生,画树状图如下,
因为共有12种等可能的情况数,其中抽到1名男生和1名女生的有8种,
所以抽到1名男生和1名女生的概率是:.
22.
解:(1)D组人数为:20×25%=5(人),C组人数为:20﹣(2+4+5+3)=6(人),
补充完整频数分布直方图如下:
估算参加测试的学生的平均成绩为:76.5(分);
(2)把4个不同的考场分别记为:1、2、3、4,
画树状图如图:
共有16种等可能的结果,小亮、小刚两名同学被分在不同考场的结果有12种,
∴小亮、小刚两名同学被分在不同考场的概率为;
(3)∵样本方差为s甲2=80,s乙2=275.4,
∴s甲2<s乙2,
∴甲班的成绩稳定,
∴甲班的数学素养总体水平好.
23.
解:(1)∵B对应的圆心角为90°,B的人数是50,
∴此次抽取的九年级学生共50÷=200(人),
C对应的人数是:200 60 50 20 40=30(人),
补全条形统计图如图所示:
(2)E所占的百分比为40÷200×100%=20%,
∴m=20,
表示D的扇形的圆心角是360°×=36°;
故答案为:20,36°;
(3)画树状图如图所示:
∵共有20种情况,选出的两名学生都是女生的情况有6种,
∴选出的两名学生都是男生的概率是6÷20=.
24.
(1)总人数为:(人);
优秀人数为:(人).
(2)合格等级:.
不合格等级对应的扇形圆心角:.
(3)用列表法如图:
A B C D E F
A AB AC AD AE AF
B BA BC BD BE BF
C CA CB CD CE CF
D DA DB DC DE DF
E EA EB EC ED EF
F FA FB FC FD FE
从表中可以看出,共有30种等情况数,符合题意选中、两位同学共2种.
恰好抽到、两位同学的概率为 .
25.
解:(1)8÷20%=40人,
(40-4-8-16)÷40×100%=30%,
则m=30;
(2)40-4-8-16=12人,
补全统计图如下:
(3)如图,
共有12种情况,恰好选中1名男生和1名女生的有6种,
所以恰好选中1名男生和1名女生的概率是.
26.
解:(1)在这次调查中,“优秀”
所在扇形的圆心角的度数是:,
故答案为:;
(2)这次调查的人数为:(人),
则及格的人数为:(人),
补全条形统计图如下:
;
(3)估计该校“良好”的人数为:
(人),
故答案为:510人;
(4)画树状图如图:
,
共有6种等可能的结果,
抽到两名都是男生的结果有2种,
∴抽到两名都是男生的概率为.
27.
解:(1)(人),
B等级的人数为(人),
D等级的人数为:(人),
补全条形统计图如下:
;
(2)列表如下:
男 男 男 女 女
男
男男 男男 女男 女男
男 男男
男男 女男 女男
男 男男 男男
女男 女男
女 男女 男女 男女
女女
女 男女 男女 男女 女女
P(恰好回访到一男一女);
(3)(人).
28.
解:(1)∵16÷0.32=50(人)
∴a=50,
b=50-(10-16-4)=20,
m=10÷50=0.2,
n=4÷50= 0.08,
故答案为:50,20,0.2,0.08;
(2)补全条形统计图如下图:
(3)该校1000名初中学生中“基本了解”的人数约有400人,
故答案为:400;
(4)记4名学生中3名男生分,一名女生为B,
A1 A2 A3 B
A1 (A1,A2) (A1,A3) (A1,B)
A2 (A2,A1) (A2,A3) (A2,B)
A3 (A3,A1) (A3,A2) (A3,B)
B (B,A1) (B,A2) (B,A3)
从4人中任取两人的所有机会均等结果共有12种
抽到两名学生均为男生包含:A1A2,A1A3,A2A1,A2A3,A3A1,A3A2,共6种等可能结果,
∴P(抽到两名学生均为男生)=
抽到一男一女包含:A1B,A2B,A3B ,BA1, BA2,BA3 共六种等可能结果
∴P(抽到一男一女)=
故抽到两名学生均为男生和抽到一男一女的概率相同
29.
解:(1)根据题意小红和小强自选项目情况如下表所示:
乒乓球 篮球 羽毛球
乒乓球 乒乓球,乒乓球 篮球,乒乓球 羽毛球,乒乓球
篮球 乒乓球,篮球 篮球,篮球 羽毛球,篮球
羽毛球 乒乓球,羽毛球 篮球,羽毛球 羽毛球,羽毛球
由上表可知,小红和小强自选项目选择方式有9种情况,小红和小强自选项目相同的情况有
3种,故小红和小强自选项目相同的概率为;
(2)①补全条形统计图如图所示:
②小红的体育中考成绩为:95×50%+90×30%+95×20%=93.5;
小强的体育中考成绩为:90×50%+95×30%+95×20%=92.5;
答:小红和小强的成绩分别为93.5和92.5.