图形的相似导学案

文档属性

名称 图形的相似导学案
格式 zip
文件大小 1.3MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-11-08 17:53:42

图片预览

文档简介

课题 27.1图形的相似(一)
学习目的:
从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.
了解成比例线段的概念,会确定线段的比.
重点、难点
重点:相似图形的概念与成比例线段的概念.
难点:成比例线段概念.
观察图片,体会相似图形
1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27.1-1)( 课本图27.1-2)
2 、小组讨论、交流.得到相似图形的概念 .什么是相似图形?
二、成比例线段概念
1.问题:如果把数学课本的长和宽分别看成是两条线段AB和CD,那么这两条线段的比是多少?
归纳:两条线段的比,就是两条线段长度的比.
线段的比要注意:1:数的比可以是正数也可以是负数,但线段的比都是正数;
2:两条线段的比与所采用的长度单位无关,讨论线段的比时一般不指明单位,但度量两条线段的单位要一致。
例如:若 a=5m,b=70㎝,则a:b=
2、成比例线段:
对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.
其中a,b,c,d叫作组成比例的项,如果a:b=c:d,那么线段a,d叫作比例的外项,b,c叫作比例的内项。线段d叫作a,b,c的 。(注意a,b,c,d是有序的)
如果a:b=b:c,那么线段b叫作 。
【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)比例的基本性质:如果a:b=c:d 那么 bc=ad即:比例的内项积等于外项积。
三、例题讲解
例(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?
(1)如果a=125cm,b=75cm,那么长与宽的比是多少?
(2)如果a=1250mm,b=750mm,那么长与宽的比是多少?
例:已知线段a,b,c,d成比例,且a=1.3㎝,b=2.4㎝,c=3.9㎝,则d= .
例(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?
四.当堂达标:
1、下列说法正确的是( )
A.小明上幼儿园时的照片和初中毕业时的照片相似. B.商店新买来的一副三角板是相似的. C.所有的课本都是相似的. D.国旗的五角星都是相似的.
2、填空题
形状 的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的 或 而得到的。

3.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?
4.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?
5. 已知线段a,b,c,d成比例,且a=1.3㎝,b=2.4㎝,c=3.9㎝,则它们的第四比例项是 。
6. 已知线段a=, c=,求a,c的比例中项b= .
课题 27.1 图形的相似(二)
一、学习目标:
掌握比例的性质,能应用比例的性质解决问题.
二、重点、难点:
应用比例的性质解决问题
三、探究新知:
1、讨论交流:
1.由得ad= (比例的基本性质).
2.若,则 ,(反比性质)
3. 若,则 , .(更比性质)
4.若,可得 。(合比性质)(自主探究推理过程)
5.若=……==k (b+d+…n ≠0,那么 = =k(等比性质)(自主探究推理过程)
2、精讲释疑
例1.已知,求 例2.已知: ,求
四、练习巩固
1.若x:y:z=2:7:5 且 x-2y+3z=6,求 x,y,z的值
五、达标检测
若= ,则=
若= ,则=
若==(x+y+z≠0),则=
4、判断对错:
①若= ,则= ( )
②若= ,则= ( )
③若= ,则= ( )
④若= ,则= ( )
5、填空:若=== ,则= ,=
6.如图1,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,AC与AB的比叫做黄金比,其比值是( ).
A. B. C. D.
7.下列每组图中的两个图形是相似图形的是 ( )
8.若 求出 , 的值.
9. 若:x:y:z=2:3:4 求 , 的值.
课题 27.1 图形的相似(三)
一、学习目标
1.知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等.
2.会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行计算.
二、重点、难点
1.重点:相似多边形的主要特征与识别.
2.难点:运用相似多边形的特征进行相关的计算.
三、探索新知
1、观察图片,体会相似图形性质(教材P36页)
(1) 图27.1-4(1)中的△A1B1C1是由正△ABC放大后得到的,观察这两个图形,它们的对应角有什么关系?对应边又有什么关系呢?
(2)对于图27.1-4(2)中两个相似的正六边形,是否也能得到类似的结论?(3)什么叫成比例线段?(阅读课本回答)
、如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.
问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.

3.【结论】:
(1)相似多边形的特征:相似多边形的对应角______,对应边的比_______.
反之,如果两个多边形的对应角______,对应边的比_______,那么这两个多边形_______.几何语言:在⊿ABC和⊿A1B1C1中
若.
则⊿ABC和⊿A1B1C1相似
(2)相似比:相似多边形________的比称为相似比.
相似比为1时,相似的两个图形______,因此________形是一种特殊的相似形.
四、例题讲解
例1(补充)(选择题)下列说法正确的是( )
A.所有的平行四边形都相似 B.所有的矩形都相似
C.所有的菱形都相似 D.所有的正方形都相似
例2、例(教材P37页)
如图,四边形ABCD和EFGH相似,求角的大小和EH的长度.
五、课堂练习
1.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.
2.如图所示的两个直角三角形相似吗?为什么?
六、当堂检测
1.如图所示的两个五边形相似,求未知边、、、的长度.
2.下列所给的条件中,能确定相似的有( )
(1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形.
A.3个 B.4个 C.5个 D.6个
3.已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?
4.一个矩形ABCD的长AD= a cm,宽AB= b cm,E、F分别是AD、BC的中点,连接E、F,所得新矩形ABFE与原矩形ABCD相似,求a:b的值. (:1)
课题 27.2.1相似三角形的判定(一)
学习目的:
会用符号“∽”表示相似三角形如△ABC ∽ △;
知道当△ABC与△的相似比为k时,△与△ABC的相似比为1/k.
理解掌握平行线分线段成比例定理
重点、难点
学习重点: 理解掌握平行线分线段成比例定理及应用.
学习难点: 掌握平行线分线段成比例定理应用.
一、知识链接
1、相似多边形的主要特征是什么?
2、相似三角形有什么性质?
二 合作探究
1)在相似多边形中,最简单的就是相似三角形.
在△ABC与△A′B′C′中,
如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且.
我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是相似比.
反之如果△ABC∽△A′B′C′,
则有∠A=_____, ∠B=_____, ∠C=____, 且.
2)问题:如果k=1,这两个三角形有怎样的关系?
明确 (1)在相似多边形中,最简单的就是相似三角形。
(2)用符号“∽”表示相似三角形如△ABC ∽ △;
(3)当△ABC与△的相似比为k时,△与△ABC的相似比为1/k.
3) 活动1 (教材P40页 探究1)
(1) 如图27.2-1),任意画两条直线l1 , l2,再画三条与l1 , l2 相交的平行线l3 , l4, l5.分别量度l3 , l4, l5.在l1 上截得的两条线段AB, BC和在l2 上截得的两条线段DE, EF的长度, AB︰BC 与DE︰EF相等吗?任意平移l5 , 再量度AB, BC, DE, EF的长度, AB︰BC 与DE︰EF相等吗?
(2) 问题,AB︰AC=DE︰( ),BC︰AC=( )︰DF.
(3) 归纳总结:平行线分线段成比例定理 三条_________截两条直线,所得的________线段的比________。
应重点关注:平行线分线段成比例定理中相比线段同线;
4) 活动2平行线分线段成比例定理推论
思考:1、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l3上,如图27.2-2(1),,所得的对应线段的比会相等吗?依据是什么?
2、如果把图27.2-1中l1 , l2两条直线相交,交点A刚落到l4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?
3、 归纳总结:
平行线分线段成比例定理推论 平行于三角形一边的直线截其他两边(或两边延长线),所得的_______线段的比_________.
三. 练习巩固
如图,在△ABC中,DE∥BC,AC=4 ,AB=3,EC=1.求AD和BD.
四. 小结巩固
“三角形相似的预备定理”揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.
相似比是带有顺序性和对应性的:
如△ABC∽△A′B′C′的相似比,那么△A′B′C′∽△ABC的相似比就是,它们的关系是互为倒数.
五、当堂检测
1.如图,△ABC∽△AED, 其中DE∥BC,找出对应角并写出对应边的比例式.
2.如图,△ABC∽△AED,其中∠ADE=∠B,找出对应角并写出对应边的比例式.

课题 27.2.1 相似三角形的判定(二)
一、学习目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程.
2.运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决问题.
二、重点、难点
1.重点:相似三角形的定义与三角形相似的预备定理.
2.难点:三角形相似的预备定理的应用.
三 知识链接
(1)相似多边形的主要特征是什么?
(2) 平行线分线段成比例定理及其推论的内容是什么?
四 、探索新知.
1 问题:如果△ABC∽△ADE,那么你能找出哪些角的关系?边呢?
2 、思考
如图27.2-3,在△ABC中,DE∥BC,DE分别交AB,AC于点D,E。
△ADE与△ABC满足“对应角相等”吗?为什么?
△ADE与△ABC满足对应边成比例吗?由“DE∥BC”的条件可得到哪些线段的比相等?
根据以前学习的知识如何把DE移到BC上去?(作辅助线EF∥AB)
你能证明AE:AC=DE:BC吗?
(4)写出△ABC∽△ADE的证明过程。
(5) 、归纳总结:判定三角形相似的(预备)定理:
平行于三角形一边的直线和其他两边相交,所成的三角形与原来三角形相似。
五、例题讲解
例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA.
(1)写出对应边的比例式;(2)写出所有相等的角;
(3)若AB=10,BC=12,CA=6.求AD、DC的长.
解:
例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.
分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长.
解:
六、课堂练习
1.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有( )
A.1对 B.2对 C.3对 D.4对
3、如图,AB∥EF∥CD,图中共有 对相似三角形,写出来并说明理由;
4.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.
七、当堂检测
1.如图,△ABC∽△AED, 其中DE∥BC,写出对应边的比例式.

2.如图,△ABC∽△AED,其中∠ADE=∠B,写出对应边的比例式.

3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;
(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.
4、如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)
课题 27.2.1相似三角形的判定(三)
学习目标:
(1) 初步掌握两个三角形相似的判定方法1、2;
(2) 能够运用三角形相似的条件解决简单的问题.
重点、难点
学习重点: 掌握两种判定方法,会运用两种判定方法判定两个三角形相似。
学习难点: 会准确的运用两个三角形相似的条件来判定三角形是否相似.
一.知识链接
(1) 两个三角形全等有哪些判定方法?
(2) 我们学习过哪些判定三角形相似的方法?
(3) 相似三角形与全等三角形有怎样的关系?
二 、探索新知
探讨问题:
任意画一个三角形三边长为3、4、5,再画一个三角形,使它的各边长都是原来三角形各边长的2倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?
探求证明方法.(已知、求证、证明)
如图,在△ABC和△A′B′C′中,,求证△ABC∽△A′B′C′
证明 :
4 【归纳】
三角形相似的判定方法1
如果两个三角形的三组对应边的比相等, 那么这两个三角形相似.
5 、探讨问题:可否用类似于判定三角形全等的SAS方法,能否通过两个三角形的两组对应边的比相等和它们对应的夹角相等,来判定两个三角形相似呢?
(画图,自主展开探究活动)
6 【归纳】
三角形相似的判定方法2 :两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似.
三、例题讲解
已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD=,求AD的长.
四、课堂练习
1.如果在△ABC中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B’=10㎝,A’C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看?
2.如图,△ABC中,点D、E、F分别是AB、BC、CA的中点,求证:△ABC∽△DEF.
五 当堂检测
1.如图,AB?AC=AD?AE,且∠1=∠2,求证:△ABC∽△AED.
2.已知:如图,P为△ABC中线AD上的一点,且BD2=PD?AD,求证:△ADC∽△CDP.
课题 27.2.1 相似三角形的判定(四)
一、学习目标
1.掌握“两角对应相等,两个三角形相似”的判定方法.
2.能够运用三角形相似的条件解决简单的问题.
二、重点、难点
1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”
2.难点:三角形相似的判定方法3的运用.
三、知识链接
(1)我们已学习过哪些判定三角形相似的方法?
(2)如图,△ABC中,点D在AB上,如果AC2=AD?AB,那么△ACD与△ABC相似吗?说说你的理由.
(3)如上图,△ABC中,点D在AB上,如果∠ACD=∠B,那么△ACD与△ABC相似吗?
(4)【归纳】
三角形相似的判定方法3
如果一个三角形的两个角与另一个三角形两个角对应相等,那么这两个三角形相似.
四、例题讲解
例1(教材P48例2).弦AB和CD相交于⊙o内一点P,求证:PA·PB=PC·PD
例2 (补充)已知:如图,矩形ABCD中,E为BC上一点,DF⊥AE于F,若AB=4,AD=5,AE=6,求DF的长.
五、课堂练习
1 、填一填
(1)如图3,点D在AB上,当∠ =∠ 时,
△ACD∽△ABC。
(2)如图4,已知点E在AC上,若点D在AB上,则满足
条件 ,就可以使△ADE与原△ABC相似。
2.已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.
六、作业
1 、图1中DE∥FG∥BC,找出图中所有的相似三角形。
2 、图2中AB∥CD∥EF,找出图中所有的相似三角形。
3 、在△ABC和△A′B′C′中,如果∠A=80°,∠C=60°,∠A′=80°,∠B′=40°,那么这两个三角形是否相似?为什么?
、已知:如图,△ABC 的高AD、BE交于点F.求证:.
课题 27.2.3相似三角形的周长与面积
学习目的:
1、相似三角形的一切对应线段的比都等于相似比。
理解并初步掌握相似三角形周长的比等于相似比,面积的比等于相似比的平方.
重点、难点
1.重点:相似三角形的性质与运用.
2.难点:相似三角形性质的灵活运用.
一.知识链接
1.问题:已知: ?ABC∽?A’B’C’,根据相似的定义,我们有哪些结论?
(从对应边上看; 从对应角上看:)
问:两个三角形相似,除了对应边成比例、对应角相等之外,
我们还可以得到哪些结论?
二 、探索新知
1.思考:
(1)如果两个三角形相似,它们的周长之间有什么关系?
我们知道,如果△ABC∽△A′B′C′,且△ABC与△A′B′C′
的相似比为k,即 因此AB=k A′B′,BC=k B′C′,
CA=k C′A′,从而
由此我们得到: 相似三角形周长的比等于 .
(2)如果两个三角形相似,它们的对应边上的高线、中线,对应角的平分线之间有什么关系?写出推导过程。
(3)如果两个三角形相似,它们的面积之间有什么关系?写出推导过程。
(4)两个相似多边形的周长和面积分别有什么关系?
2 、结论——相似三角形的性质:
性质1 相似三角形周长的比等于相似比,对应高的比等于相似比。
即:如果 △ABC ∽△A′B′C′,且相似比为k , 那么 .
性质2 相似三角形面积的比等于相似比的平方.
即:如果 △ABC ∽△A′B′C′,且相似比为k ,那么 .
相似多边形的性质1.相似多边形周长的比等于相似比.
相似多边形的性质2.相似多边形面积的比等于相似比的平方.
三、例题讲解
例 1(补充) 已知:△ABC ∽△A′B′C′,它们的周长分别是 60 cm 和72 cm,且AB=15 cm,B′C′=24 cm,求BC、AB、A′B′、A′C′的长.
解:
例2(教材P52例6)在ΔABC 和ΔDEF中,AB=2DE,AC=2DF,∠A=∠D,ΔABC的周长是24,面积是12,求ΔDEF的周长和面积。
解:
四、课堂练习
1.填空:
(1)如果两个相似三角形对应边的比为3∶5 ,那么它们的相似比为________,周长的比为_____,面积的比为_____.
(2)如果两个相似三角形面积的比为3∶5 ,那么它们的相似比为________,周长的比为________.
(3)连结三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于______,面积比等于_______.
(4)两个相似三角形对应的中线长分别是6 cm和18 cm,若较大三角形的周长是42 cm ,面积是12 cm 2,则较小三角形的周长为________cm,面积为_______cm2.
3.如图,在正方形网格上有△A1B1C1和△A2B2C2,这两个三角形相似吗?如果相似,求出△A1B1C1和△A2B2C2的面积比.
五、当堂检测
1、判断题:
(1)如果把一个三角形各边同时扩大为原来的5倍,那么它的周长也扩大为原来的5倍。
(2)如果把一个三角形的面积扩大为原来的9倍,那么它的三边也扩大为原来的9倍。
2、蛋糕店制作两种圆形蛋糕,一种半径是15cm,一种半径是30cm,如果半径是15cm的蛋糕够2个人吃,半径是30cm的蛋糕够多少人吃?
(假设两种蛋糕高度相同)
3、在一张复印出来的纸上,一个多边形的一条边由原图中的2cm变成了6cm,这次复印的放缩比例是多少?这个多边形的面积发生了怎样的变化?
4、△ABC中,DE∥BC,EF∥AB,已知△ADE和△EFC的面积分别为4和9,求△ABC的面积。
5.如图,点D、E分别是△ABC边AB、AC上的点,且DE∥BC,BD=2AD,那么△ADE的周长︰△ABC的周长=    .
6.已知:如图,△ABC中,DE∥BC, (1)若,① 求的值; ② 求的值;
③ 若,求△ADE的面积;
(2)若,,过点E作EF∥AB交BC于F,求□BFED的面积;
(3)若, ,过点E作EF∥AB交BC于F,求□BFED的面积.
课题 相似三角形的性质运用
学习要求
掌握相似三角形的性质,解决有关的计算或证明问题.
课堂学习检测
一、填空题
1.相似三角形的对应角______,对应边的比等于______.
2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______.
3.相似三角形的周长比等于______.
4.相似三角形的面积比等于______.
5.相似多边形的周长比等于______,相似多边形的面积比等于______.
6.若两个相似多边形的面积比是16∶25,则它们的周长比等于______.
7.若两个相似多边形的对应边之比为5∶2,则它们的周长比是______,面积比是______.
8.同一个圆的内接正三角形与其外切正三角形的周长比是______,面积比是______.
9.同一个圆的内接正方形与其外切正方形的周长比是______,面积比是______.
10.同一个圆的内接正六边形与其外切正六边形的周长比是______,面积比是______.
11.正六边形的内切圆与它的外接圆的周长比是______,面积比是______.
12.在比例尺1∶1000的地图上,1cm2所表示的实际面积是______.
二、选择题
13.已知相似三角形面积的比为9∶4,那么这两个三角形的周长之比为( )
A.9∶4 B.4∶9 C.3∶2 D.81∶16
14.如图所示,在平行四边形ABCD中,E为DC边的中点,AE交BD于点Q,若△DQE的面积为9,则△AQB的面积为( )

A.18 B.27 C.36 D.45
15.如图所示,把△ABC沿AB平移到△A′B′C′的位置,它们的重叠部分的面积是△ABC面积的一半,若,则此三角形移动的距离AA'是( )
A. B. C.1 D.
三、解答题
16.已知:如图,E、M是AB边的三等分点,EF∥MN∥BC.求:△AEF的面积∶四边形EMNF的面积∶四边形MBCN的面积.

综合、运用、诊断
17.已知:如图,△ABC中,∠A=36°,AB=AC,BD是角平分线.
(1)求证:AD2=CD·AC;
(2)若AC=a,求AD.
18.已知:如图,□ABCD中,E是BC边上一点,且相交于F点.
(1)求△BEF的周长与△AFD的周长之比;
(2)若△BEF的面积S△BEF=6cm2,求△AFD的面积S△AFD.
19.已知:如图,Rt△ABC中,AC=4,BC=3,DE∥AB.
(1)当△CDE的面积与四边形DABE的面积相等时,求CD的长;
(2)当△CDE的周长与四边形DABE的周长相等时,求CD的长.
课题 27.3位似(一)
学习目标
1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
重点、难点
1.重点:位似图形的有关概念、性质与作图.
2.难点:利用位似将一个图形放大或缩小.
一.自主探究:
活动1 :生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.
(教材P59页思考)观察图27.3-2图中有多边形相似吗?如果有,那么这种相似什么共同的特征?

图27.3-2
通过观察了解到图形,除具备相似的所有性质外,还有其特性:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形. 这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.) 每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.
二、自主活动:可以将一个图形放大或缩小
活动2 (教材P60例题))把图1中的四边形ABCD缩小到原来的.
分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .
作法一:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′。
问:此题目还可以如何画出图形?
作法二:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA, OB, OC,OD;
(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,作法三:(1)在四边形ABCD内任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′.
三、当堂达标:
画出三角形ABC的位似图形,使其扩大到原来的2倍。(三种画法)
课题 27.3位似(二)
学习目标:
1.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.
2.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.
重点、难点
1.重点:用图形的坐标的变化来表示图形的位似变换.
2.难点:把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.
一.自主探究:
活动1 (教材P61页探究:)
(1)如图27.3-4(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?
图27.3-4
(2)如图27.3-4(2),△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?
位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于 或 .
二、应用例题:
活动2: 例(教材P62的例题)
解法二:点A的对应点A′′的坐标为(-6×,6×),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)
三、课堂练习
活动3 教材P62页.1、2
活动4:在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些
平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.
1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),
(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点的坐标;
(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;
(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.
2.(教材P63)如图27.3-6所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?
分析:观察的角度不同,答案就不同
解:
位 似 测试
学习要求
1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小.
2.能用坐标表示位似变形下图形的位置.
课堂学习检测
1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.
(1) (2)

(3) (4)

2.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( )
A.(0,0),2 B.(2,2), C.(2,2),2 D.(2,2),3
综合、运用、诊断
3.已知:如图,四边形ABCD的顶点坐标分别为A(-4,2),B(-2,-4),C(6,-2),D(2,4).试以O点为位似中心作四边形A'B'C'D′,使四边形ABCD与四边形A′B′C′D′的相似比为1∶2,并写出各对应顶点的坐标.
4.已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D点的坐标分别为(1,2),(1,1),(3,1).
(1)求E点和A点的坐标;
(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;
(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?
拓展、探究、思考
5.在已知三角形内求作内接正方形.
6.在已知半圆内求作内接正方形.
课题 27.2.2相似三角形应用举例(一)
教学目的:
进一步巩固相似三角形的知识.
能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.
重点、难点
1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.
2.难点:灵活运用三角形相似的知识解决实际问题.
一、知识链接
1、判断两三角形相似有哪些方法?
2、相似三角形有什么性质?
二、.探索新知
1、问题1:
学校操场上的国旗旗杆的高度是多少?你有什么办法测量?
2、例题讲解:
据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度.
如图,如果木杆EF长2 m,它的影长FD为3 m,测得OA为201 m,求金字塔的高度BO. (思考如何测出OA的长?)
分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,从而构造相似三角形,再利用相似三角形的判定和性质,根据已知条件,求出金字塔的高度.
解:
3、 课堂练习
在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为90米,那么高楼的高度是多少米? (在同一时刻物体的高度与它的影长成正比例.)
问题:估算河的宽度,你有什么好办法吗?
4、如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS = 45 m,ST = 90 m,QR = 60 m,求河的宽度PQ.
5、课堂练习
如图,测得BD=120 m,DC=60 m,EC=50 m,求河宽AB。
6、结合此题写出测量河宽的方案。
三、当堂检测
1 如图,这是圆桌正上方的灯泡(当成一个点)发出的光线照射桌面形成阴影的示意图,已知桌面的直径为1.2米,桌面距离地面为1米,若灯泡距离地面3米,则地面上阴影部分的面积为多少?

2.为了测量一池塘的宽AB,在岸边找到了一点C,使AC⊥AB,在AC上找到一点D,在BC上找到一点E,使DE⊥AC,测出AD=35m,DC=35m,DE =30m,那么你能算出池塘的宽AB吗?
3、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为    米.
4、如图,已知零件的外径a为25cm ,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=3,且量得CD=7cm,求厚度x。
5 、如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在
AB、AC上,这个正方形零件的边长是多少?
课题 :27.2.2相似三角形应用举例(二)
学习目的:
进一步巩固相似三角形的知识.
能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.
重点、难点
1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.
2.难点:灵活运用三角形相似的知识解决实际问题.
一 、知识链接
1、判断两三角形相似有哪些方法?
2、相似三角形有什么性质?
二 .探索新知
1 、例5 已知左、右并排的两棵大树的高分别是AB = 8 m和CD = 12 m,两树根部的距离BD = 5 m.一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?
解:
注意 :认真体会这一生活实际中常见的场景,借助图形把这一实际中常见的场景,抽象成数学图形,利用相似的性质解决这一实际问题,图形可以滞后给出,先经历这一抽象的过程
例6(补充).如图所示,一段街道的两边缘所在直线分别为AB,PC,并且AB ∥PC.建筑物DE的一端所在的直线MN垂直AB于点M,交PC于点N.小亮从胜利街的A处,沿AB着方向前进,小明一直站在P点的位置等候小亮.
(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在位置(用点C标出);
(2)已知: , 求(1)中的C点到胜利街口的距离CM.

2 课堂练习
小明想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?
三、当堂检测
如图,要在底边BC=160cm,高AD=120cm的△ABC铁皮余料上截取一个矩形EFGH,使点H在AB上,点G在AC上,点E,F在BC上,AD交HG于点M,此时有AM/AD=HG/BC. (1)设矩形EFGH的长HG=y,宽HE=X,确定y与X的函数关系式
(2)当X为何值时,矩形EFGH的面积S最大?

课题 相似三角形应用举例
学习要求
能运用相似三角形的知识,解决简单的实际问题.
课堂学习检测
一、选择题
1.已知一棵树的影长是30m,同一时刻一根长1.5m的标杆的影长为3m,则这棵树的高度是( )
A.15m B.60m C.20m D.
2.一斜坡长70m,它的高为5m,将某物从斜坡起点推到坡上20m处停止下,停下地点的高度为( )
A. B. C. D.
3.如图所示阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐距地面的距离BC=1m,EC=1.2m,那么窗户的高AB为( )

第3题图 第4题图
A.1.5m B.1.6m C.1.86m D.2.16m
4.如图所示,AB是斜靠在墙壁上的长梯,梯脚B距离墙角1.6m,梯上点D距离墙1.4m,BD长0.55m,则梯子长为( )
A.3.85m B.4.00m C.4.40m D.4.50m
二、填空题
5.如图所示,为了测量一棵树AB的高度,测量者在D点立一高CD=2m的标杆,现测量者从E处可以看到杆顶C与树顶A在同一条直线上,如果测得BD=20m,FD=4m,EF=1.8m,则树AB的高度为______m.

第5题图 第6题图
6.如图所示,有点光源S在平面镜上面,若在P点看到点光源的反射光线,并测得AB=10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.
三、解答题: 7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.

8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?
综合、运用、诊断
9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?

10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与物AB的长之间有什么关系?你能说出其中的道理吗?

11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m的黄丽同学BC的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)