山东省临沂市18中2022届高三上学期期中学业水平检测数学试题(PDF版含答案)

文档属性

名称 山东省临沂市18中2022届高三上学期期中学业水平检测数学试题(PDF版含答案)
格式 pdf
文件大小 518.3KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2022-01-10 12:00:36

图片预览

文档简介

2021-2022 学年度第一学期期中学业水平检测
高三数学试题
本试卷共 4 页,22 题.全卷满分 150 分.考试用时 120 分钟.
注意事项:
1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码
粘贴在答题卡指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改
动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷
上无效。
3.考试结束后,请将答题卡上交。
一、单项选择题:本大题共 8小题,每小题 5分,共 40分。在每小题给出的四个选项中,只有一
项是符合题目要求的。
1.设集合M {y | y 4 2 x},N {x | y ln(1 x)},则M ( RN)
A.[1, 2] B.[1,2) C. ( ,1) D. (1, 2]
2.已知 a b,a 0,b 0,c R ,则下列不等关系正确的是
A. a2 b2 1 1B. C. a c b c D. ac bc
a b
3.方程 2x 3x 4 0 的实数根所在的区间为
A. (
1 ,1) B. ( 1,0) C. (0,
1) D. (1,
4)
2 2 3

4.已知 a (2, 4),b (m,1),则“m 2”是“ a与b的夹角为钝角”的
A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件
ln( x), x 0
5.已知函数 f (x) x ,若关于 x的方程m f (x) 0有两个不同的实数根,则实数m的
e , x 0
取值范围为
A. (0, ) B. ( ,0] (1, ) C. ( ,0] D. (0,1]
6.已知 l,m是空间中两条不同的直线, , 是空间中两个不同的平面,下列说法正确的是
A.若 l , m // l , m ,则 B.若 // , l // ,则 l //
C.若 l m , l , // ,则m // D.若 , l // ,则 l
高三数学试题 第 1 页 (共 4 页)
7.已知角
3π 7π
的顶点在坐标原点,始边与 x轴非负半轴重合,终边上有一点M (tan ,2 3 cos ) ,
4 6
1 cos 2
则 sin 2 的值为
2
1 7 7 21 1
A. 或 B. C. D.
2 10 10 10 2
8.如图,在四棱锥 P ABCD中,底面 ABCD是边长为 2 的正方形,侧面 PAB 为等边三角形,
平面 PAB 平面 ABCD,M 为 PD上一点, N 为BC上一点,直线 NM 平面 PAD ,
则 PND的面积为 P
A. 2 M
B. 3
C. 6 A
D
D.3
B N C
二、多项选择题:本大题共 4小题,每小题 5分,共 20分。在每小题给出的四个选项中,有多项
符合题目要求。全部选对的得 5分,部分选对的得 2分,有选错的得 0分。
9.已知等差数列{an}的前 n项和为 Sn,公差 d 0, S11 110, a7是 a3与a9的等比中项,则下
列选项正确的是
A. a12 a3 a9 20 B. d 2
C. Sn有最大值 D.当 Sn 0时, n的最大值为 21
10.将函数 f (x) sin(2x ) ( π π π)的图象向左平移 个单位长度后得到函数
3
g(x) sin(2x π )的图象,则下列说法正确的是
3
A.
π

3
B.函数 f (x)
π
的图象关于点 ( ,0) 成中心对称
3
C.函数 f (x) 的最小正周期为 π
π 5π
D.函数 f (x) 的一个单调递增区间为[ , ]
12 12
11.已知 ABCD A1B1C1D1 为正四棱柱,底面边长为 2,高为 4,则下列说法正确的是
A.异面直线 AD1 与 A1C
π
1所成角为 3
B.三棱锥 A A1B1D1 的外接球的表面积为 24π
C.平面 AB1D1 // 平面 BDC1
B 4D.点 1到平面 A1BC1的距离为 3
高三数学试题 第 2 页 (共 4 页)
12.设正实数 a,b满足 a b 4 ,则
A. ab 1 1 2有最大值 2 B. 有最小值
a 2b a 3
C. a2 b2 有最小值 4 D. a b 有最大值 2 2
三、填空题:本大题共 4个小题,每小题 5分,共 20分。

13.已知 | a | 2,| b | 1,| a b | 3 ,则 | a b | __________.
14.若 2m 3n t,且 2m 3n mn 0,则 t __________.
15.已知 f (x)是定义域为R 的奇函数, y f (x 1)为偶函数,当0 x 1时, f (x) x ,
若 a f (2019),b f (2021),c f (2022) ,则a,b,c的大小关系是__________.
16.已知 Sn是数列{an}的前 n项和, Sn 14n n
2 ,则 an __________;
若Tn | a1 | | a2 | | a3 | ... | an | ,则T20 __________.
四、解答题:共 70分。解答应写出文字说明,证明过程或演算步骤。
17.(10分)
如图,某圆形海域上有四个小岛,小岛 A与小岛 B相距为5nmile,小岛 A与小岛C相距为
3 5 nmile,小岛 B与小岛C相距为 2 nmile, CAD为钝角,且 sin CAD 2 5 .
5
D
(1)求小岛 A,B,C 围成的三角形的面积;
(2)求小岛 A与小岛D之间的距离.
C
A
18.(12分) B
如图,三棱柱 ABC A1B1C1的所有棱长都是 2,AA1 平面 ABC,M 为 AB的中点,点 N
C N C1
为CC1的中点.
(1)求证:直线MN // 平面 A1BC1;
B1
(2)求直线MN 到平面 A1BC1的距离. BM
A A1
高三数学试题 第 3 页 (共 4 页)
19.(12分)
已知 S 1n为数列{an}的前 n项和,a1 2,7Sn 2 an 1,bn ,Tlog a log a n
为数列
2 n 2 n 1
{bn}的前 n项和.
(1)求数列{an}的通项公式;
(2)若m 2022Tn对所有 n N
*恒成立,求满足条件m的最小整数值.
20.(12分)
在“① 2a cosB c;②m (a,c b),n (c b,a b),m // n ”这两个条件中任选一个,补
充在下面问题中,并进行求解.
问题:在 ABC中, a,b,c分别是三内角 A,B,C 的对边,已知b 4 ,D是 AB边上的点,

且 AD 3DB, sin Asin B(2 cosC) 1 sin 2 C 1 ,若____________,求CD的长度.
2 2 4
注:如果选择多个条件分别进行解答,按第一个解答进行计分.
21.(12分)
四棱锥 S ABCD的底面 ABCD为直角梯形, AB 2BC 2CD 4, AB BC,
AB //CD, SA SD,且平面 SAD 平面 ABCD,M 为 AB中点.
(1)求证:CM SM ;
π
(2)若直线 SB与平面 SAD所成的角为 ,求平面 SAD与平面 SBC的夹角的余弦值.
4
S
D C
A M B
22.(12分)
ln x ax
已知函数 f (x) , a R .
x
(1)若a 0,求 f (x) 的最大值;
(2)若0 a 1,求证: f (x) 有且只有一个零点;
(3)设0 m n且mn nm ,求证:m n 2e.
高三数学试题 第 4 页 (共 4 页)
2021-2022 学年度第一学期期中学业水平检测高三数学评分标准
一、单项选择题:本大题共 8小题.每小题 5分,共 40分.
1-8:B CAC DAB C
二、多项选择题:本大题共 4小题.每小题 5分,共 20分.
9.BC; 10.ACD; 11.BCD; 12.AD.
三、填空题:本大题共 4小题,每小题 5分,共 20分.
13. 7 ; 14.72; 15. a c b; 16.15 2n; 218.
四、解答题:本大题共 6小题,共 70分,解答应写出文字说明、证明过程或演算步骤.
17.(10分)
解:(1)在 ABC中,由余弦定理得,
2 2 2 2 2 2
cos ABC BA BC AC 5 2 (3 5) 4 ···································2分
2BA BC 2 5 2 5
所以 sin ABC 3 ······················································································ 3分
5
S 1 BA BC sin ABC 1 3所以 ABC 5 2 32 2 5
所以小岛 A、 B、C围成的三角形的面积为 3 nmile2 ········································· 5分
(2)因为 A,B,C,D四点共圆,所以角 ABC与角 ADC互补,
3
所以 sin ADC , cos ADC 4 ·····························································6分
5 5
sin CAD 2 5 CAD 2 5 5因为 ,且 为钝角,所以 cos CAD 1 ( ) 2
5 5 5
所以 sin ACD sin( ADC CAD) sin ADCcos CAD cos ADCsin C AD
3 ( 5 ) 4 2 5 5 ·················································· 8分
5 5 5 5 5
在 ACD中,由正弦定理得: AD AC
sin ACD sin ADC
5
所以 AD AC sin ACD
3 5
5 5
sin ADC 3
5
所以小岛 A与小岛D之间的距离为5 nmile ····················································· 10分
高三数学答案 第 1 页 (共 6 页)
18.(12分)
证明:(1)取 A1B1中点D,连接MD交 A1B于 E,连接C1E ,
在三棱柱中,M 为 AB中点,
z
MD // AA1,ME
1
AA1 ·······················2分2 N
点 N 为CC C C11的中点
1
NC1 // AA1且 NC1 AA2 1
NC1 // ME且 NC1 ME ························3分 B1
四边形MNC B1E为平行四边形 M
MN //C1E ········································· 4分
E D y
A A1
又MN 平面 A1BC1,C1E 平面 A1BC1 x
MN //平面 A1BC1 ··································5分
(2)由(1)得,点M 到平面 A1BC1的距离即为直线MN 到平面 A1BC1的距离
连接MC ,则MC AB
AA1 平面 ABC,MD // AA1
MD 平面 ABC, MA,MD,MC两两垂直,
以M 为原点,MA,MD,MC所在直线分别为 x轴、 y轴、 z轴,
建立如图所示的空间直角坐标系······································································ 6分
则 A1(1, 2,0),B( 1, 0,0),C1 (0, 2, 3)
BA1 (2, 2,0),BC1 (1, 2, 3),
设平面 A1BC1的一个法向量为n (x, y, z),

n BA 0 2x 2y 0
1


n BC1 0 x 2y 3z 0

取 y 1,则 x 3 1, z , n (1, 3 1, ),··················································· 9分
3 3
又MB ( 1,0,0)

M ABC |MB n
| 21
所以点 到平面 1 1的距离为 | n | 7
即直线MN到平面 A 211BC1的距离为 ························································· 12分7
19.(12分)
解:(1)由题意7Sn 2 an 1
当 n 2时,7Sn 1 2 an
两式相减得:7an an 1 an ·········································································· 1分
即: an 1 8an ( n 2)
高三数学答案 第 2 页 (共 6 页)
所以 n 2时,{an}为等比数列·······································································2分
又因为 n 1时, a2 7S1 2 7 2 2 16
a
所以 2 8 ································································································· 3分
a1
所以,对所有 n N*,{an}是以 2为首项,8为公比的等比数列··························· 4分
所以 an 2 8
n 1 23n 2 ················································································5分
1 1
(2)由题知:bn log a .log a log 2 3n 2 log 2 3n 12 n 2 n 1 2 2
1
······································6分
(3n 2)(3n 1)
1
( 1 1 ) ·································· 8分
3 3n 2 3n 1
1 1 1 1 1 1 1 1
所以Tn b1 b2 ... bn (1 ) (1 ) ···10分3 4 4 7 3n 2 3n 1 3 3n 1
2022T 2022 1 1 1所以 n (1 ) 674(1 ) 674 ································ 11分3 3n 1 3n 1
所以满足m 2022Tn恒成立的最小m值为674.·············································12分
20.(12分)
解:若选择条件①
由 2a cosB c,根据正弦定理得 2sin Acos B sinC ······································· 1分
所以 2sin Acos B sin(A B) sin Acos B cos AsinC
即 sin AcosB cos AsinC 0,也即 sin(A B) 0 ········································· 2分
因为 π A B π,所以 A B(1)式························································ 3分
又因为 sin Asin B(2 cosC) 1 sin 2 C 1
2 2 4
sin Asin B[2 (1 2sin 2 C即 )] 1 sin 2 C 1 1 ,所以 sin Asin B ··················· 5分
2 2 2 4 4
又由(1)式, sin A sin B,所以 sin A sin B 1 ··········································6分
2
所以 A B π ,C 2π ················································································7分
6 3
所以b a 4 AB 2CAcos π , 4 3 ··························································8分
6

因为 AD 3DB,所以 AD 3 AB 3 3,DB 3 ·········································· 9分
4
在 ACD中,
CD2 AC 2 AD2 2AC AD cos π 42 (3 3)2 2 4 3 3 3 7 ···········11分
6 2
所以CD 7 ····························································································12分
高三数学答案 第 3 页 (共 6 页)
若选择条件②

因为m (a,c b),n (c b,a b),且m // n
所以 a(a b) (c b)(c b)
即 a2 b2 c2 ab ···················································································· 1分
a2 b2 2
所以 cosC c 1 ······································································ 2分
2ab 2
0 C π 2π,所以C (1)式········································································3分
3
又因为 sin Asin B(2 cosC) 1 sin 2 C 1
2 2 4
即 sin Asin B[2 (1 2sin 2 C)] 1 sin 2 C 1
2 2 2 4
所以 sin Asin B 1 (2)式············································································· 4分
4
C 2π π ,B A ······················································································ 5分
3 3
sin Asin( π 1所以 A) ·············································································· 6分
3 4
所以 sin A(sin π cos A cos π sin A) 1
3 3 4
3 1 1 3 1 cos 2A 1
所以 sin Acos A sin 2 A ,也即 sin 2A
2 2 4 4 4 4
3 sin 2A 1所以 cos 2A 1
2 2
即 sin(2A π ) 1 ························································································ 7分
6
π 2A π 5π因为
6 6 6
所以 2A π π π π ,所以 A ,B ······························································8分
6 2 6 6
π
所以b a 4, AB 2CAcos 4 3
6

AD 3DB AD 3

,所以 AB 3 3,DB 3 ················································ 9分
4
在 ACD中,
CD2 AC 2 AD2 2AC .AD cos π 42 (3 3)2 2 4 3 3 3 7 ··········· 11分
6 2
所以CD 7 ····························································································12分
高三数学答案 第 4 页 (共 6 页)
21.(12分)
解:(1)证明:取 AD中点H ,连接 SH ,MH ,MD
因为 SA SD,M 为 AB中点
所以 SH AD ···························································································· 1分
因为平面 SAD 平面 ABCD
z
所以 SH 平面 ABCD ··········································2分
CM 平面 ABCD S
所以 SH CM ····················································3分
因为MA MD,所以MH AD ··························· 4分
D
AM //CD, AM CD, H C
A
M B
所以四边形 AMCD为平行四边形,所以CM // AD x y
所以MH CM ·························································································· 5分
因为 SH HM H ,所以CM 平面 SHM
所以CM SM ···························································································6分
(2) 连结 BD,可得四边形MBCD为平行四边形, AB BC, BC CD
所以四边形MBCD为正方形,所以 BD CM , AD //CM
所以 BD AD
因为平面 SAD 平面 ABCD,所以 BD 平面 SAD ··········································7分
π
所以 BSD即为 SB与平面 SAD所成角,所以 BSD ·································· 8分
4
BD 2 2 ,所以 BD 2 2 ,所以 SAD为等边三角形,所以 SH 6
以H 为原点,分别以HA,HM ,HS 所在直线为正方向建立空间直角坐标系如图,
可得H (0,0,0),S(0,0, 6),M (0, 2,0),B( 2,2 2,0),C( 2 2, 2,0)

HM 为平面 SAD的法向量,HM (0, 2,0),··············································· 9分

又因为 BC ( 2, 2,0),SB ( 2,2 2 6),

设平面 SBC的法向量为 n (x, y, z) ,

n BC 0 2x 2y 0


,所以 ,
n SB 0 2x 2 2y 6z 0
3 3 3 3
令 z 1,解得: x , y ,所以 n ( , ,1) ··························· 11分
3 3 3 3
6
SAD SBC cos H M n 3 5所以平面 与平面 所成角的余弦值
| HM || n | 15 52
3
所以所以平面 SAD 5与平面 SBC所成角的余弦值为 ·······································12分
5
高三数学答案 第 5 页 (共 6 页)
22.(12分)
ln x
解:(1)由题知:若a 0, f (x) ,其定义域为 (0, ) ··························· 1分
x
f (x) 1 ln x 2 ··························································································· 2分x
由 f (x) 0得 x e
所以,当0 x e时, f (x) 0;当 x e时, f (x) 0
所以, f (x)在 (0,e]上单调递增,在[e, )上单调递减······································ 3分
1
所以 f (x)max f (e) ················································································4分e
(1 a)x ln x ax 1 ln x
(2)由题知: f (x) x 2 2 ········································· 5分x x
由(1)知, f (x)在 (0,e]上单调递增,在[e, )上单调递减
因为0 a 1,
x e f (x) ln x ax ln x当 时, a a 0 ,
x x
则 f (x)在 (e, )无零点········································································· 6分
0 x e f (x) ln x ax a ln x当 时, ,
x x
f (1又因为 ) 1 a e 0且 f (e) a 0
e e
所以 f (x)在 (0,e)上有且只有一个零点
所以, f (x)有且只有一个零点········································································8分
(3)因为mn nm lnm ln n 等价于 ····························································· 9分
m n
a 0 f (x) ln x由(1)知:若 , ,且 f (x)在 (0,e]上单调递增,在[e, )上单调递减,
x
且0 m n,所以0 m e,n e,即0 m e n ·······································10分
令 g(x) (2e x) ln x x ln(2e x),0 x e ,
2e x x 2e x x
所以 g (x) ln x ln(2e x) ln[x(2e x)]
x 2e x x 2e x
ln[(x 2e x x e)2 e2] ln e2 2 0
x 2e x
所以, g(x)在 (0,e)上单调递增, g(x) g(e) 0 ··········································· 11分
ln x ln(2e x)
所以 ,0 x e
x 2e x
0 m e lnm ln n ln n lnm ln(2e m)又因为 n且 ,所以
m n n m 2e m
又因为 n e, 2e m e,且 f (x)在[e, )上单调递减
所以 n 2e m,即m n 2e ···································································· 12分
高三数学答案 第 6 页 (共 6 页)
同课章节目录