四川省资阳市安岳县2021-2022学年九年级上学期期末数学试卷(图片版含答案)

文档属性

名称 四川省资阳市安岳县2021-2022学年九年级上学期期末数学试卷(图片版含答案)
格式 pdf
文件大小 3.1MB
资源类型 教案
版本资源 华东师大版
科目 数学
更新时间 2022-01-13 13:05:58

图片预览

文档简介

2021—2022 学年度第一学期期末义务教育九年级学情诊断
数学学科参考答案及评分意见
一、选择题(共 10小题,每小题 4 分,共 40 分)
题号 1 2 3 4 5 6 7 8 9 10
答案 A A B C D C B D B D
二、填空题(共 6小题,每小题 4分,共 24 分)
11. 4 212. 13.-2
3
(48 24) 2414. 等边 15. , 16.
5 5 5
三、解答题(共 86分)
17.解:(1)8- 2 3 ·························································································4分
3
(2)原式= ······························································································ 7分
x y
x 3 0 y x 3 3 x 2,∴ ,∴x=3,y=2·············································8分
3 x 0
3
当 x=3 ,y=2时,原式= =3··············································································9分
3 2
18.解:(1) x1 3,x2 0.5 ··········································································5分
x 2 6 x 2 6(2) 1 = , 2 . ···································································10分2 2
19.解:(1)7 卡片中共有两张卡片写有数字 1,∴从中任意抽取一张卡片,卡片上写有数字 1
2
的概率是 ········································································································ 2分
7
(2)列表或画树状图略························································································8分
7
这个两位数大于 22的概率为 ············································································· 10分
12
20.解: 1 x 2( )∵关于 的方程 x 4x k 1 0有两实数根,
∴△=( 4)2 4 1 (k 1) 0 ············································································2分
解得. k 3 ········································································································3分
(2)由根与系数的关系可得 x1 x2 4, x1.x2 k 1················································· 4分
九年级上数学参考答案及评分意见 第 1页(共 4页) 1
3 3 x x 4 3(x1 x2 )∵ 1 2 ∴ x1x2 4 ········································· 5分x1 x2 x1x2
12
∴ k 1 4 ······························································································ 6分
k 1
解得: k1 3, k2 5 ····················································································· 8分
又∵ k 3,经检验 k=-3是原方程的根,故 k2 5舍去···············································9分
∴ k 3 ···········································································································10分
21.解:如图 1所示,延长 DA交水平虚线于 F,过 E作 EH⊥BF于 H,····················· 1分
∵∠BAF=90°,∠ABF=37°,
∴Rt△ABF中,AF=tan37°×AB≈0.75×8=6(米),…………3分
∴EF=AF+AD+DE=8.5,………………………………………5分
∵∠EHF=90°=∠BAF,∠BFA=∠EFH,
∴∠E=37°,……………………………………………………7分
∴Rt△EFH中,EH=cos37°×EF≈0.80×8.5=6.8(米),……9分
图 1
又∵底边 AB离地面的距离为 1.3米,
∴点 E离地面的高度为 6.8+1.3=8.1(米).……………………………………………………….10分
答:此时档板最高点离地面的高为 8.1米.……………………………………………………….11分
22.解:(1)设每件衬衫应降价 x元,则每件盈利(40-x)元,每天可售出(20+2x)件,
由题意得:(40-x)(20+2x)=1200,··········································································2分
即:(x-10)(x-20)=0,解得:x1=10,x2=20····························································· 3分
为了扩大销售量,增加盈利,尽快减少库存,所以 x的值应为 20.
所以,若商场平均每天要盈利 1200元,每件衬衫应降价 20元·········································
(2)假设能达到,由题意,得(40-x)(20+2x)=1500,··············································
整理得:2x2-60x+700=0,
△=602-2×4×700=3600-5600<0,··············································································
即:该方程无解, P
所以,商场平均每天盈利不能达到 1500元;······························································
Q H
(3)设每件衬衫应降价 x元,
图 2
由题意得:商场平均每天盈利为(40-x)(20+2x),·····················································
=800+80x-20x-2x2,
=-2(x2-30x+225)+450+800,
=-2(x-15)2+1250,······················································
所以当 x=15元时,商场平均每天盈利取得最大值为 1250元,
所以,商场平均每天盈利最多 1250 图 3元,达到最大值时应降价 15元.······························
23.解:(1)∵AB=10,AC=8,∴CB=6····································································
6 8
∴CD= =4.8·····································································································
10
P
九年级上数学参考答案及评分意见 第 2页(共 4页) 2
Q
图 4
(2)如图 2所示,作 PH AB,垂足为 H,BQ=t,CP=t,BP=6-t
6 t PH PH 4(6 t)∴ ,∴
6 4.8 5
∴ S 1 .t. 4(6 t) 2(6 t)t (02(6 t)t
∴ 2,解得:t=1或 5 ................. ................ ................ ..6分
5
(3)存在点 P,使以点 B、P、Q 为顶点的三角形与△ABC 相似,理由如下:分两种情况:
①当∠BQP=90°时,如图 3,此时△PQB∽△ACB,
∴ BP BQ 6 t t ,∴ …………………………………………..8分
AB BC 10 6
解得 t=2.25.................. .......................................................................9分
②当∠BPQ=90°时,如图 4,此时△QPB∽△ACB,
BP BQ 6 t t
∴ ,∴ ……………………………………..11分
BC AB 6 10
解得 t=3.75
综上可得,t=2.25 或 t=3.75.……………………………..12分
24 1 1.解:(1)如图 5,∵P是 CD边的中点,∴DP= DC.∵DC=AB,AB=AP,∴DP= AP.
2 2
∵∠D=90° DP 1,∴sin∠DAP= = .∴∠DAP=30°.∵∠DAB=90°,∠PAO=∠BAO,∠DAP=30°,
AP 2
∴∠OAB=30°.∴∠OAB的度数为 30°.......................... ........................ .......................... ......... .. ...2分
(2)如图 5
①∵四边形 ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.
由折叠得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.
∴∠APO=90°.∴∠APD=90°﹣∠CPO=∠POC.
∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA................... ...................... .................... .. .... .. ..4分
OCP PDA 1 4 OC=OP=CP 1 1②∵△ 与△ 的面积比为 : ,∴ = =
PD PA DA 4 2
∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8............... .. .... .. . . .................... .. ...6分
设 OP=x,则 OB=x,CO=8﹣x.
在 Rt△PCO中,∵∠C=90°,CP=4,OP=x,CO=8﹣x,∴x2=(8﹣x)2+42.解得:x=5.
∴AB=AP=2OP=10.∴边 AB的长为 10........................... ......................... ........................... ....... .. ..8分
(3)作 MQ∥AN,交 PB于点 Q,如图 6.
∵AP=AB,MQ∥AN,∴∠APB=∠ABP,∠ABP=∠MQP.∴∠APB=∠MQP.∴MP=MQ.
∵MP=MQ,ME⊥PQ 1,∴PE=EQ= PQ.∵BN=PM,MP=MQ,∴BN=QM.
2
∵MQ∥AN,∴∠QMF=∠BNF..................................... ................................... .................................10分
九年级上数学参考答案及评分意见 第 3页(共 4页) 3
在△MFQ和△NFB中,
QMF BNF
1
QFM BFN.∴△MFQ≌△NFB.∴QF=BF.∴QF= QB........................... ............12分
2
QM BN
EF=EQ+QF=1PQ+1QB=1∴ PB.由(2)中的结论可得:PC=4,BC=8,∠C=90°.
2 2 2
∴PB= 82+42=4 5.∴EF=1PB=2 5................................ ............. .............................. ....................13分
2
图 5 图 6
九年级上数学参考答案及评分意见 第 4页(共 4页) 4
同课章节目录