(共18张PPT)
人教版数学 八年级下册
19.2.2 一次函数
第3课时 用待定系数法求一次函 数解析式
学习目标
理解待定系数法的意义;
会用待定系数法求一次函数的解析式.(重点、难点)
掌握用待定系数法求一次函数解析式的解题步骤.
新课引入
前面,我们学习了一次函数及其图象和性质,你能写出两个具体的一次函数解析式吗?如何画出它们的图象?
思考:
反过来,已知一个一次函数的图象经过两个具体的点,你能求出它的解析式吗?
两点法——两点确定一条直线
问题引入
新知讲解
如图,已知一次函数的图象经过P(0,-1),Q(1,1)两点. 怎样确定这个一次函数的解析式呢?
合作探究
新知讲解
因为一次函数的一般形式是y=kx+b(k,b为常数,k≠0),要求出一次函数的解析式,关键是要确定k和b的值(即待定系数).
函数解析式
y=kx+b
满足条件的两点
(x1,y1),(x2,y2)
一次函数的图象直线l
选取
解出
画出
选取
新知讲解
∵P(0,-1) 和Q(1,1)都在该函数图象上,
∴它们的坐标应满足y=kx+b , 将这两点坐标代入该式中,得到一个关于k,b的二元一次方程组:
k·0 + b = -1,
k + b = 1,
{
{
解这个方程组,得
k=2,
b=-1.
∴这个一次函数的解析式为y = 2x- 1.
新知讲解
像这样,通过先设定函数解析式(确定函数模型),再根据条件确定解析式中的未知系数,从而求出函数解析式的方法称为待定系数法.
知识要点
解方程组得
b=-1
3k+b=5,
-4k+b=-9,
把点(3,5)与(-4,-9)分别代入,得:
新知讲解
做一做
已知一次函数的图象过点(3,5)与(-4,-9),
求这个一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b.
∴这个一次函数的解析式为
k=2
y=2x-1.
新知讲解
(1)设:设一次函数的一般形式 ;
(2)列:把图象上的点 , 代入一次函数的解析式,组成 方程组;
(3)解:解二元一次方程组得k,b;
(4)还原:把k,b 的值代入一次函数的解析式.
求一次函数解析式的步骤:
y=kx+b(k≠0)
二元一次
归纳总结
解得
由题意得
新知讲解
例1 若一次函数的图象经过点 A(2,0),且与直线y=-x+3平行,求其解析式.
解:设这个一次函数的解析式为y=kx+b.
k = -1
2k + b = 0
{
k = -1,
b = 2.
{
∴y=-x+2.
新知讲解
正比例函数y=k1x与一次函数y=k2x+b的图象如图所示,它们的交点A的坐标为(3,4),并且OB=5.
(1)你能求出这两个函数的解析式吗?
(2)△AOB的面积是多少呢?
做一做
分析:由OB=5可知点B的坐标为(0,-5).y=k1x的图象过点A(3,4),y=k2x+b的图象过点A(3,4),B(0,-5),代入解方程(组)即可.
小试牛刀
1.一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是 ( )
A.k=2 B.k=3 C.b=2 D.b=3
D
y
x
O
2
3
小试牛刀
2. 如图,直线l是一次函数y=kx+b的图象,填空:
(1)b=______,k=______;
(2)当x=30时,y=______;
(3)当y=30时,x=______.
2
-18
-42
l
y
x
小试牛刀
解:设直线l为y=kx+b,
∵l与直线y=-2x平行,∴k= -2.
又∵直线过点(0,2),
∴2=-2×0+b,
∴b=2,
∴直线l的解析式为y=-2x+2.
3. 已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l 的解析式.
小试牛刀
4.若一直线与另一直线y=-3x+2交于y轴同一点,且过(2,-6),你能求出这条直线的解析式吗?
答案:y=-4x+2
分析:直线y=-3x+2与y轴的交点为(0,2),于是得知该直线过点(0,2),(2,-6),再用待定系数法求解即可.
小试牛刀
解:(1)由题意得
当0≤t≤2时,T=20;
当2函数解析式为:
T =
20(0≤t≤2)
5t+10(25.一个试验室在0:00—2:00保持20℃的恒温,在2:00—4:00匀速升温,每小时升高5℃.写出试验室温度T(单位:℃)关于时间t(单位:h)的函数解析式.
{
课堂小结
用待定系数法求一次函数的解析式
2. 根据已知条件列出关于k,b的方程(组);
1. 设所求的一次函数解析式为y=kx+b;
3. 解方程,求出k,b;
4. 把求出的k,b代回解析式即可.
谢谢观看!
注:本课件所有素材来源于网络,如有侵权,请联系我们。