人教版八年级数学下册17.1第3课时利用勾股定理的作图或计算 课件(共25张PPT)

文档属性

名称 人教版八年级数学下册17.1第3课时利用勾股定理的作图或计算 课件(共25张PPT)
格式 pptx
文件大小 17.0MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-01-14 08:54:52

图片预览

文档简介

(共25张PPT)
第十七章
17.1勾股定理
第三课时
利用勾股定理的作图或计算
人教版数学 八年级下册
学习目标
会运用勾股定理确定数轴上表示实数的点及解决网格问题.
灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.
欣赏下面海螺的图片:
这个图是怎样绘制出来的呢?
新课引入
在数学中也有这样一幅美丽的“海螺型”图案,如第七届国际数学教育大会的会徽.
-1 0 1 2 3
问题1 你能在数轴上画出表示 的点吗? 呢?
用同样的方法作 呢?
提示:可以构造直角三角形作出边长为无理数的边,就能在数轴上画出表示该无理数的点.
新知讲解
思考 根据上面问题你能在数轴上画出表示 的点吗?
问题2 长为 的线段能是直角边的长都为正整数的直角三角形的斜边吗?


新知讲解
0
1
2
3
4
步骤:
l
A
B
C
1.在数轴上找到点A,使OA=3;
2.作直线l⊥OA,在l上取一点B,使AB=2;
3.以原点O为圆心,以OB为半径作弧,弧与数轴交
于C点,则点C即为表示 的点.
O
新知讲解
也可以使OA=2,AB=3,同样可以求出C点.
新知讲解
利用勾股定理表示无理数的方法:
(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.
(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.
“数学海螺”
类似地,利用勾股定理可以作出长为 线段.
1
1
新知讲解
例1 如图,数轴上点A所表示的数为a,求a的值.
解:∵图中的直角三角形的两直角边长为1和2,
∴斜边长为 ,
即-1到A的距离是 ,
∴点A所表示的数为 .
易错点拨:求点表示的数时注意画弧的起点不从原点起,则所表示的数不是斜边长.
新知讲解
画一画 在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中以A出发分别画出长度为 的线段AB.
B
B
B
新知讲解
例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC各顶点的坐标,并求出此三角形的周长.
解:由题图得A(2,2),B(-2,-1),C(3,-2).
由勾股定理得
∴△ABC的周长为
新知讲解
归纳
新知讲解
勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度.
新知讲解
例4 如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,求AB边上的高.
解:如图,过点C作CD⊥AB于点D.
D
此类网格中求格形的高的题,常用的方法是利用网格求面积,再用面积法点三角求高.
例5 如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.
D
A
B
C
E
F
解:在Rt△ABF中,由勾股定理得
BF2=AF2-AB2=102-82=36,
∴BF=6cm.∴CF=BC-BF=4.
设EC=xcm,则EF=DE=(8-x)cm ,
在Rt△ECF中,根据勾股定理
得 x2+ 42=(8-x)2,
解得 x=3.
即EC的长为3cm.
要用到方程思想
新知讲解
新知讲解
【变式题】如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,求AM的长.
解:连接BM,MB′.设AM=x,
在Rt△ABM中,AB2+AM2=BM2.
在Rt△MDB′中,MD2+DB′2=MB′2.
∵MB=MB′,
∴AB2+AM2=MD2+DB′2,
即92+x2=(9-x)2+(9-3)2,
解得x=2.
即AM=2.
新知讲解
折叠问题中结合勾股定理求线段长的方法:
(1)设一条未知线段的长为x(一般设所求线段的长为x);
(2)用已知线数或含x的代数式表示出其他线段长;
(3)在一个直角三角形中应用勾股定理列出一个关于x
的方程;
(4)解这个方程,从而求出所求线段长.
1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为 ( )
A.5 B.6 C.7 D.25
A
小试牛刀
2.小明学了利用勾股定理在数轴上作一个无理数后,在数轴上的2个单位长度的位置找一个点D,然后过点D作一条垂直于数轴的线段CD,CD为3个单位长度,以原点为圆心,原点到点C的距离为半径作弧,交数轴于一点(如图),则该点位置大致在数轴上
(  )
A.2和3之间 B.3和4之间
C.4和5之间 D.5和6之间
B
D
小试牛刀
3.如图,点A表示的实数是 (  )
4.如图,在矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为
(  )
C
D
小试牛刀
5.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的高为_______.
小试牛刀
解:∵AB=AD=8cm,∠A=60°,
∴△ABD是等边三角形.
∵∠ADC=150°,
∴∠CDB=150°-60°=90°,
∴△BCD是直角三角形.
6.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.
小试牛刀
又∵四边形的周长为32cm,
∴CD+BC=32-AD-AB=32-8-8=16(cm).
设CD=xcm,则BC=(16-x)cm,
由勾股定理得82+x2=(16-x)2,
解得x=6.∴S△BCD= ×6×8=24(cm2).
7.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿 AC折叠,点D落在点D′处,求重叠部分△AFC的面积.
解:易证△AFD′≌△CFB,
∴D′F=BF,
设D′F=x,则AF=8-x,
在Rt△AFD′中,(8-x)2=x2+42,
解得x=3.
∴AF=AB-FB=8-3=5,
∴S△AFC= AF BC=10.
小试牛刀
8、 如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.
解:如图,延长AD、BC交于E.
∵∠B=90°,∠A=60°,
∴∠E=90°-60°=30°,
在Rt△ABE和Rt△CDE中,
∵AB=2,CD=1,
∴AE=2AB=2×2=4,CE=2CD=2×1=2,
由勾股定理得
E
D
C
B
A
补形法求面积
小试牛刀
课堂小结
1.如何在数轴上表示出无理数的点?
2.利用勾股定理解决折叠问题及其他图形的计算通常用到方程思想有哪些?
谢谢观看!
注:本课件所有素材来源于网络,如有侵权,请联系我们。