(共29张PPT)
第十七章
17.2勾股定理逆定理
第一课时
勾股定理逆定理
人教版数学 八年级下册
学习目标
理解勾股定理逆定理的具体内容及原命题、逆命题、勾股数的概念.
能证明勾股定理的逆定理,能利用勾股定理的逆定理判断一个三角形是直角三角形.
古埃及人曾用下面的方法得到直角
新知讲解
问题:按照这种做法真能得到一个直角三角形吗?
用13个等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
新知讲解
3
4
5
追问:这个三角形的三条边有什么关系吗
3
2
4
2
5
2
+
=
新知讲解
下面有三组数分别是一个三角形的三边长a, b, c:
①5,12,13; ②7,24,25; ③8,15,17.
问题 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
是
新知讲解
下面有三组数分别是一个三角形的三边长a, b, c:
①5,12,13; ②7,24,25; ③8,15,17.
问题2 这三组数在数量关系上有什么相同点?
① 5,12,13满足52+122=132,
② 7,24,25满足72+242=252,
③ 8,15,17满足82+152=172.
问题3 古埃及人用来画直角的三边满足这个等式吗?
∵32+42=52,∴满足.
a2+b2=c2
新知讲解
我觉得这个猜想不准确,因为测量结果可能有误差.
我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.
问题3 据此你有什么猜想呢
由上面几个例子,我们猜想:
命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
新知讲解
△ABC ≌ △A′B′C′
?
∠C是直角
△ABC是直角三角形
A
B
C
a
b
c
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2.
求证:△ABC是直角三角形.
构造两直角边分别为a,b的Rt△A′B′C′
证一证:
新知讲解
证明:作Rt△A′B′C′,使∠C′=90°,A′C′=b,B′C′=a,
∴△ABC≌ △A′B′C′(SSS),
∴∠C= ∠C′=90° , 即△ABC是直角三角形.
则
A
C
a
B
b
c
新知讲解
勾股定理的逆定理:
如果三角形的三边长a 、b 、c满足
a2+b2=c2,
那么这个三角形是直角三角形.
A
C
B
a
b
c
勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形 ,最长边所对应的角为直角.
特别说明:
新知讲解
例1 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?
(1) a=15 , b=8 ,c=17;
解:(1)∵152+82=289,172=289,∴152+82=172,
根据勾股定理的逆定理,这个三角形是直角三角形,且∠C是直角.
(2) a=13 ,b=14 ,c=15.
(2)∵132+142=365,152=225,
∴132+142≠152,不符合勾股定理的逆定理,
∴这个三角形不是直角三角形.
新知讲解
新知讲解
根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.
【变式题1】若△ABC的三边a,b,c满足 a:b: c=3:4:5,试判断△ABC的形状.
解:设a=3k,b=4k,c=5k(k>0),
∵(3k)2+(4k)2=25k2,(5k)2=25k2,
∴(3k)2+(4k)2=(5k)2,
∴△ABC是直角三角形,且∠C是直角.
新知讲解
新知讲解
已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.
例2 如图,在正方形ABCD中,F是CD的中点,E为BC上一点,且CE= CB,试判断AF与EF的位置关系,并说明理由.
解:AF⊥EF.理由如下:
设正方形的边长为4a,
则EC=a,BE=3a,CF=DF=2a.
在Rt△ABE中,得AE2=AB2+BE2=16a2+9a2=25a2.
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,
∴△AEF为直角三角形,且AE为斜边.
∴∠AFE=90°,即AF⊥EF.
新知讲解
命题1 如果直角三角形的两条直角边长分别为a,b,斜边为c,那么a2+b2=c2.
命题2 如果三角形的三边长a 、b 、c满足a2+b2=c2,那么这个三角形是直角三角形.
前面我们学习了两个命题,分别为:
新知讲解
命题1:
直角三角形
a2+b2=c2
命题2:
直角三角形
a2+b2=c2
题设
结论
它们是题设和结论正好相反的两个命题.
问题1 两个命题的条件和结论分别是什么?
问题2 两个命题的条件和结论有何联系?
新知讲解
题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.
一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理.勾股定理与勾股定理的逆定理为互逆定理.
新知讲解
如果三角形的三边长a,b,c满足a2+b2=c2,
那么这个三角形是直角三角形.
满足a2+b2=c2的三个正整数,称为勾股数.
新知讲解
常见勾股数:
3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41;10,24,26等等.
勾股数拓展性质:
一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.
新知讲解
练一练:下列各组数是勾股数的是 ( )
A.6,8,10 B.7,8,9
C.0.3,0.4,0.5 D.52,122,132
A
方法点拨:根据勾股数的定义,勾股数必须为正整数,先排除小数,再计算最长边的平方是否等于其他两边的平方和即可.
新知讲解
1.下列各组数是勾股数的是 ( )
A.3,4,7 B.5,12,13
C.1.5,2,2.5 D.1,3,5
将直角三角形的三边长扩大同样的倍数,则得到的三角形 ( ) A.是直角三角形 B.可能是锐角三角形
C.可能是钝角三角形 D.不可能是直角三角形
B
A
小试牛刀
3.在△ABC中,∠A, ∠B, ∠C的对边分别为a,b,c.
①若∠C- ∠B= ∠A,则△ABC是直角三角形;
②若c2=b2-a2,则△ABC是直角三角形,且∠C=90°;
③若(c+a)(c-a)=b2,则△ABC是直角三角形;
④若∠A:∠B:∠C=5:2:3,则△ABC是直角三角形.
以上命题中的假命题有 ( )
A.1个 B.2个 C.3个 D.4个
A
小试牛刀
4.已知a、b、c是△ABC三边的长,且满足关系式 ,
则△ABC的形状是 ________________.
等腰直角三角形
5.(1)一个三角形的三边长分别为15cm、20cm、25cm,则这个三角形最长边上的高是_______cm;
12
(2)“等腰三角形两底角相等”的逆定理为
__________________________________________.
有两个角相等的三角形是等腰三角形
小试牛刀
6.已知△ABC,AB=n -1,BC=2n,AC=n +1(n为大于1的正整数).试问△ABC是直角三角形吗?若是,哪一条边所对的角是直角?请说明理由.
解:∵AB +BC =(n -1) +(2n)
=n4 -2n +1+4n
=n4 +2n +1
=(n +1)
=AC ,
∴△ABC是直角三角形,边AC所对的角是直角.
小试牛刀
7.如图,在四边形ABCD中,AB=8,BC=6,AC=10,AD=CD= ,求四边形ABCD 的面积.
小试牛刀
课堂小结
1.勾股定理的逆定理是什么?
2.什么叫做互逆命题、原命题与逆命题、互逆定理
4.勾股定理与勾股定理的逆定理的区别与联系是什么?
3.已学过的直角三角形的判定方法有哪些?
谢谢观看!
注:本课件所有素材来源于网络,如有侵权,请联系我们。