(共24张PPT)
第十八章
18.1 平行四边形的性质第二课时
平行四边形的对角线的特征
人教版数学 八年级下册
学习目标
掌握平行四边形对角线互相平分的性质.
经历对平行四边形性质的猜想与证明的过程,渗透转化思想, 体会图形性质探究的一般思路.
一位饱经沧桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他让小丽帮忙分一下,小丽是这样分的:
当四个孩子看到时,争论不休,都认为自己分的地少,同学们,你认为小丽这样分合理吗 为什么
新课引入
我们知道平行四边形的边角这两个基本要素的性质,那么平行四边形的对角线又具有怎样的性质呢
A
B
C
D
O
如图,在□ABCD中,连接AC,BD,并设它们相交于点O.
OA与OC,OB与OD有什么关系
猜一猜
OA=OC,OB=OD
怎样证明这个猜想呢?
新知讲解
已知:如图,□ ABCD的对角线AC、BD相交于点O.
求证:OA=OC,OB=OD.
证明:
∵四边形ABCD是平行四边形,
∴ AD=BC,AD∥BC,
∴ ∠1=∠2,∠3=∠4,
∴ △AOD≌△COB(ASA),
∴ OA=OC,OB=OD.
A
C
D
B
O
3
2
4
1
新知讲解
A
C
D
B
O
平行四边形的对角线互相平分.
平行四边形的性质
应用格式:
∵四边形ABCD是平行四边形,
∴ OA=OC,OB=OD.
新知讲解
例1 已知 ABCD的周长为60cm,对角线AC、BD相交于点O,△AOB的周长比△DOA的周长长5cm,求这个平行四边形各边的长.
解:∵四边形ABCD是平行四边形,
∴OB=OD,AB=CD,AD=BC.
∵△AOB的周长比△DOA的周长长5cm,
∴AB-AD=5cm.
又∵ ABCD的周长为60cm,∴AB+AD=30cm,
则AB=CD=17.5cm,AD=BC=12.5cm.
新知讲解
新知讲解
平行四边形被对角线分成四个小三角形,相邻两个三角形的周长之差等于邻边边长之差.
【变式题】如图,在平行四边形ABCD中,对角线AC、BD相交于点O,平行四边形ABCD的周长是100cm,△AOB与△BOC的周长的和是122cm,且AC:DB= 2:1,求AC和BD的长.
解:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,OB=OD,
∴AB+BC=50.
∵△AOB与△BOC的周长的和是122cm,
∴OA+OB+AB+OB+OC+BC=122,
即AC+BD=122-50=72.
又∵AC:DB=2:1,
∴AC=48cm,BD=24cm.
新知讲解
例2 如图,平行四边形ABCD中,AC、BD交于O点,点E、F分别是AO、CO的中点,试判断线段BE、DF的关系并证明你的结论.
解:BE=DF,BE∥DF.
理由如下:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∴OE=OF.
在△OFD和△OEB中,
OF=OE,∠DOF=∠BOE,OD=OB,
∴△OFD≌△OEB,
∴∠OEB=∠OFD,BE=DF,
∴BE∥DF.
新知讲解
例3 如图, ABCD的对角线AC,BD交于点O.过点O作直线EF,分别交AB,CD于点E,F.求证:OE=OF.
A
B
C
D
F
E
O
证明:∵四边形ABCD是平行四边形,
∴∠ODF=∠OBE,
∠DFO=∠BEO,
∴△DOF≌△BOE(AAS),
∴AB∥CD, OD=OB,
∴OE=OF.
思考 改变直线EF的位置,OE=OF还成立吗
新知讲解
A
B
C
D
O
解:∵四边形ABCD是平行四边形,
根据勾股定理得
∴BC=AD=8,CD=AB=10.
是直角三角形.
又∵OA=OC,
例4 如图,在 ABCD中,AB=10,AD=8,AC⊥BC. 求BC,CD,AC,OA的长,以及 ABCD的面积.
新知讲解
问题 平行四边形的对角线分平行四边形ABCD为四个三角形,它们的面积有怎样的关系呢?
解:相等.理由如下:
∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD.
∵△ADO与△ODC等底同高,
∴S△ADO=S△ODC.
同理可得S△ADO=S△ODC=S△BCO=S△AOB.
还可结合全等来证哟.
新知讲解
新知讲解
平行四边形的对角线分平行四边形为四个面积相等的三角形,且都等于平行四边形面积的四分之一.相对的两个三角形全等.
A
B
C
D
O
F
E
例5 如图,AC,BD交于点O,EF过点O,平行四边形ABCD被EF所分的两个四边形面积相等吗?
M
N
解:设直线EF交AD,BC于点N,M.
∵AD∥BC,
∴∠NAO=∠MCO,∠ANO=∠CMO.
又∵AO=CO,
∴△NAO≌△MCO,
∴S四边形ANMB=S△NAO+S△AOB+S△MOB=S△MCO+S△AOB+S△MOB
=S△AOB+S△COB= .
∴S四边形ANMB=S四边形CMND,
即平行四边形ABCD被EF所分的两个四边形面积相等.
新知讲解
A
B
D
O
E
F
A
B
C
D
O
E
F
C
A
B
C
D
O
E
F
思考 如图,AC,BD交于点O,EF过点O,平行四边形ABCD被EF所分的两个四边形面积相等吗?
同例5易求得平行四边形ABCD被EF所分的两个四边形面积相等.
新知讲解
过对角线交点的任一条直线都将平行四边形分成面积相等的两部分.
小试牛刀
1.如图,□ABCD的对角线AC、BD相交于点O,且 AC+BD=16,CD=6,则△ABO的周长是 ( )
A. 10 B. 14 C. 20 D. 22
B
B
C
D
A
O
小试牛刀
2.如图,在平行四边形ABCD中,下列结论中错误的是 ( )
A.∠ABO=∠CDO B.∠BAD=∠BCD
C.AO=CO D.AC⊥BD
B
C
D
A
O
D
小试牛刀
3.如图,平行四边形ABCD的对角线AC,BD交于点O,若AD=16,AC=24,BD=12,则△OBC的周长为 ( )
A.26 B.34 C.40 D.52
B
小试牛刀
4、把一个平行四边形分成3个三角形,已知两个阴影三角形的面积分别是9cm2和12cm2,求平行四边形的面积.
解:(9+12)×2
=21×2
=42(cm2)
答:平行四边形的面积是42cm2.
小试牛刀
5.如图,已知O是平行四边形ABCD的对角线的交点,AC=24,BD=18,AB=16,求△OCD的周长及AD边的取值范围.
解:由题意得OA=OC=12,OB=OD=9,CD=AB=16,
∴△OCD的周长为12+9+16=37.
在△ACD中,24-16<AD<24+16,∴8<AD<40;
在△ABD中,18-16<AD<18+16,∴2<AD<34;
在△AOD中,12-9<AD<12+9,∴3<AD<21.
综上所述,AD的取值范围应是8<AD<21.
与三角形三边关系结合
小试牛刀
课堂小结
1.通过探究,本节课你得到了哪些结论?
2.在探究平行四边形的性质过程中,你有哪些认识?
3.在运用平行四边形的性质解题时,你获得了什么思想和方法?
谢谢观看!
注:本课件所有素材来源于网络,如有侵权,请联系我们。