人教版八年级数学下册18.2.2第2课时菱形的判定 课件(共24张PPT)

文档属性

名称 人教版八年级数学下册18.2.2第2课时菱形的判定 课件(共24张PPT)
格式 pptx
文件大小 6.8MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-02-25 15:44:23

图片预览

文档简介

(共24张PPT)
第十八章
18.2.2菱 形
第二课时
菱形的判定
人教版数学 八年级下册
学习目标
理解并掌握菱形的定义及两个判定方法.
能根据不同的已知条件,选择适当的判定定理进行推理和计算.
经历菱形判定定理的探究过程,渗透类比思想,体会研究图形判定的一般思路.
前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形 对此你有什么猜想?
猜想:对角线互相垂直的平行四边形是菱形.
你能证明这一猜想吗?
新课引入
A
B
C
O
D
已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O ,AC⊥BD.
求证:□ABCD是菱形.
证明: ∵四边形ABCD是平行四边形.
∴OA=OC.
又∵AC⊥BD,
∴BD是线段AC的垂直平分线.
∴BA=BC.
∴四边形ABCD是菱形(菱形的定义).
新知讲解
对角线互相垂直的平行四边形是菱形
AC⊥BD
几何语言描述:
∵在□ABCD中,AC⊥BD,
∴ □ABCD是菱形.
A
B
C
D
菱形ABCD
A
B
C
D
□ABCD
菱形的判定定理:
新知讲解
例1 如图, ABCD的两条对角线AC、BD相交于点O,AB=5,
AO=4,BO=3.
求证:四边形ABCD是菱形.
A
B
C
D
O
又∵四边形ABCD是平行四边形,
∵ OA=4,OB=3,AB=5,
证明:
即AC⊥BD,
∴ AB2=OA2+OB2,
∴△AOB是直角三角形,
∴四边形ABCD是菱形.
新知讲解
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.
A
B
C
D
E
F
O
1
2
证明:∵四边形ABCD是矩形,
∴AE∥FC,∴∠1=∠2.
∵EF垂直平分AC,
∴AO = OC .
又∠AOE =∠COF,
∴△AOE≌△COF,∴EO =FO.
∴四边形AFCE是平行四边形.
又∵EF⊥AC
∴ 四边形AFCE是菱形.
新知讲解
小刚:分别以A、C为圆心,以大于 AC的长为半径作弧,两条 弧分别相交于点B , D,依次连接A、B、C、D 四点.
已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?
C
A
B
D
想一想:根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?
猜想:四条边相等的四边形是菱形.
新知讲解
证明:∵AB=BC=CD=AD;
∴AB=CD , BC=AD.
∴四边形ABCD是平行四边形.
又∵AB=BC,
∴四边形ABCD是菱形.
A
B
C
D
已知:如图,四边形ABCD中,AB=BC=CD=AD.
求证:四边形ABCD是菱形.
新知讲解
四条边都相等的四边形是菱形
AB=BC=CD=AD
几何语言描述:
∵在四边形ABCD中,AB=BC=CD=AD,
∴四边形 ABCD是菱形.
A
B
C
D
菱形ABCD
菱形的判定定理:
四边形ABCD
A
B
C
D
新知讲解
证明: ∵ ∠1= ∠2,
又∵AE=AC,AD=AD,
∴ △ACD≌ △AED (SAS).
同理△ACF≌△AEF(SAS) .
∴CD=ED, CF=EF.
又∵EF=ED,∴CD=ED=CF=EF,
∴四边形CDEF是菱形.
2
例3 如图,在△ABC中, AD是角平分线,点E、F分别在AB、 AD上,且AE=AC,EF = ED.
求证:四边形CDEF是菱形.
A
C
B
E
D
F
1
新知讲解
例4 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
新知讲解
证明:由平移变换的性质得CF=AD=10cm,DF=AC.
∵∠B=90°,AB=6cm,BC=8cm,
∴AC=DF=AD=CF=10cm,
∴四边形ACFD是菱形.
四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.
新知讲解
H
G
F
E
D
C
B
A
例5 如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.
新知讲解
证明:连接AC、BD.
∵四边形ABCD是矩形,
∴AC=BD.
∵点E、F、G、H为各边中点,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
顺次连接对角线相等的四边形的各边中点,得到四边形是菱形.
新知讲解
思考 在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?
A
C
D
B
分析:易知四边形ABCD是平行四边形,只需证一组邻边相等或对角线互相垂直即可进一步判断.
由题意可知BC边上的高和CD边上的高相等,
然后通过证△ABE≌△ADF,即得AB=AD.
请补充完整的证明过程
E
F
新知讲解
1.下列命题中正确的是 ( )
A.一组邻边相等的四边形是菱形
B.三条边相等的四边形是菱形
C.四条边相等的四边形是菱形
D.四个角相等的四边形是菱形
C
小试牛刀
2.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是 (  )
A.AB=BC B.AC=BC
C.∠B=60° D.∠ACB=60°
B
解析:∵将△ABC沿BC方向平移得到△DCE,
∴AC∥DE,AC=DE,
∴四边形ACED为平行四边形.
当AC=BC时,
平行四边形ACED是菱形.
故选B.
小试牛刀
3.判断下列说法是否正确
(1)对角线互相垂直的四边形是菱形;
(2)对角线互相垂直且平分的四边形是菱形;
(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;
(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.




4.一边长为5cm的平行四边形的两条对角线的长分别为24cm和26cm,则平行四边形的面积是 .
312cm2
小试牛刀
5.如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.
解:∵四边形ABCD为平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAC=∠ACB,∠BAC=∠ACD,
∵AC平分∠DAB,
∴∠DAC=∠BAC,
∴∠DAC=∠ACD,
∴AD=DC,
∴四边形ABCD为菱形,
∴四边形ABCD的周长=4×2=8.
小试牛刀
A
B
C
D
O
E
6.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE ∥BD.求证:四边形OCED是菱形.
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OC=OD,
∴四边形OCED是菱形.
小试牛刀
证明:∵MN是AC的垂直平分线,
∴AE=CE,AD=CD,OA=OC,
∠AOD=∠EOC=90°.
∵CE∥AB,
∴∠DAO=∠ECO,
∴△ADO≌△CEO(ASA).
∴AD=CE,
∴四边形ADCE是平行四边形.
又∵∠AOD=90°,
∴四边形ADCE是菱形.
7.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.
B
C
A
D
O
E
M
N
小试牛刀
课堂小结
1.通过探究,本节课你得到了哪些结论?
2.在探究菱形的判定方法过程中,你有哪些认识?
3.在运用形的判定方法解题时,你获得了什么思想和方法?
谢谢观看!
注:本课件所有素材来源于网络,如有侵权,请联系我们.