2019人教版必修第一册第二章专题强化匀变速直线运动规律的应用分层训练
学校:___________姓名:___________班级:___________考号:___________
评卷人得分
一、多选题
1.一个质点正在做匀加速直线运动,用固定的照相机对该质点进行闪光照相,闪光时间间隔为1s,分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了0.4m;在第3次、第4次闪光的时间间隔内移动了0.8m,由上述条件可知
A.质点运动的加速度是0.2 m/s B.质点运动的加速度是0.4 m/s
C.第1次闪光时质点的速度是0.2m/s D.第1次闪光时质点的速度是0.3 m/s
2.如图所示,一个质点沿不同的路径从A到达B:沿弦AB、沿圆弧ACB、沿圆弧ADB,且经历的时间相等,则三种情况下该质点( )
A.平均速度相同
B.平均速率相同
C.沿弦AB运动平均速率最小
D.沿弦AB运动时的平均速度方向与任意时刻的瞬时速度方向相同
3.在平直公路上行驶的a车和b车,其位置随时间变化的图像(图像)分别为图中直线a和曲线b,已知b的加速度恒定,时直线a和曲线b相切,则( )
A.a做匀速直线运动,且
B.时a和b相遇且此时二者速度相同
C.b做匀加速直线运动且加速度大小为
D.时a和b的距离为9m
4.如图所示,光滑斜面AE被分为四个相等的部分,一物体从A点由静止释放,它沿斜面向下做匀加速运动。依次通过B、C、D点,最后到达底端E点。下列说法正确的是
A.下滑全程的平均速度等于vB
B.物体通过每一部分时,其速度增量vB-vA=vC-vB=vD-vC=vE-vD
C.物体由A点到各点所经历的时间之比为tB:tC:tD:tE=1:::2
D.物体通过各点的瞬时速度之比为vB:vC:vD:vE=1:-1:-:2-
5.甲、乙两质点在同一时刻、同一地点沿同一方向做直线运动。质点甲做初速度为零,加速度大小为a1的匀加速直线运动。质点乙做初速度为v0,加速度大小为a2的匀减速直线运动至速度减为零保持静止。甲、乙两质点在运动过程中的x-v(位置-速度)图象如图所示(虚线与对应的坐标轴垂直)( )
A.在x-v图象中,图线a表示质点甲的运动,质点乙的初速度v0=6m/s
B.质点乙的加速度大小a2=1m/s2
C.质点甲的加速度大小a1=2m/s2
D.图线a、b的交点表示两质点同时到达同一位置
6.质点做直线运动的位移x与时间t的关系为x=5t+t2(各物理量均采用国际单位),则
A.第1s内的位移是5m B.前2s内的平均速度是7m/s
C.任意相邻的1s内位移差都是1m D.任意1s内的速度增量都是2m/s
7.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线.由图可知( )
A.在t1到t2这段时间内,b车的速率不一定比a车大
B.在时刻t1,a、b两车运动方向相反
C.在t1到t2这段时间内,b车的速率先增大后减少
D.在时刻t1,b车追上a车
8.物体做初速度为0的匀加速直线运动,在第1s内的位移为1.0m,第3s内的位移为5.0m,则下列说法正确的是( )
A.物体运动的加速度大小为
B.物体前4s内的平均速度为3m/s
C.物体第1s内、第2s内、第3s内的位移之比为1∶3∶5
D.物体第1s末、第2s末、第3s末的速度之比为3∶4∶5
评卷人得分
二、单选题
9.汽车在平直的公路上以20m/s的速度行驶,当汽车以4m/s2的加速刹车时,则汽车6s内的位移是( )
A.120m B.50m C.48m D.100m
10.从高处释放一个石子,石子做自由落体运动。已知石子在第1s内的位移大小是5m,则它在第3s内的位移大小是( )
A.10m B.15m C.20m D.25m
11.己知飞机着陆做匀减速直线运动可获得大小为a= 6m/s2的加速度,若它着陆时的初速度为v0= 60m/s,则该飞机着陆后t= 12s内滑行的距离为( )
A.288m B.300m C.400m D.488m
12.从固定斜面上的O点每隔0.ls由静止释放一个同样的小球。释放后小球做匀加速直线运动某一时刻,拍下小球在斜面运动的照片,如图所示。测得相邻小球间的距离xAB=4cm,xBC=8cm。已知O点距离斜面底端的长度为l=35cm。由以上数据可以得出( )
A.小球的加速度大小为6m/s2
B.小球在B点的速度为0.6m/s
C.斜面上最多有3个小球在运动
D.该照片是距第一个小球释放后0.3s拍摄的
13.物体在一条直线上从静止开始做加速运动,第1 s内的位移是1 m,第2 s内的位移是2 m,……,第n秒内的位移是n米。由此可知( )
A.物体可能做匀加速直线运动
B.物体的加速度为1 m/s2
C.物体在第3 s内的中间时刻的速度为3 m/s
D.物体在前5 s内的平均速度为3 m/s
14.甲、乙、丙三辆汽车同时以相同的速度经过某一路标,此后甲一直做匀速直线运动,乙先加速后减速,丙先减速后加速,它们经过下一路标时的速度仍相同,则( )
A.甲车先经过下一个路标 B.乙车先经过下一个路标
C.丙车先经过下一个路标 D.无法判断谁先经过下一个路标
15.轿车起动时的运动可近似看作匀加速运动,某人为了测定某辆轿车在平路上起动时的加速度,利用相机每隔2s曝光一次,拍摄了一张在同一底片上多次曝光的照片,如图所示.如果轿车车身总长为,那么这辆轿车的加速度大约为
A. B. C. D.
16.一颗子弹以大小为v的速度射进一墙壁但未穿出,射入深度为x,如果子弹在墙内穿行时做匀变速直线运动,则子弹在墙内运动的时间为( )
A. B.2 C. D.
评卷人得分
三、解答题
17.隧道是高速公路上的特殊路段,也是事故多发路段之一、某日,一货车A因故障停在隧道内离隧道入口的位置。此时另一轿车B正以的速度匀速向隧道口驶来,驾驶员在进入隧道口时,突然发现了停在前方的货车A,并立即采取制动措施,假设轿车驾驶员反应时间,轿车制动时加速度。
(1)试通过计算判断两车是否相撞;
(2)假如相撞,那么撞前瞬间轿车B速度大小为多少?要使两车不相撞,那么货车A至少停放在离隧道口多远处?
18.质点A沿直线以速度vA=5m/s做匀速运动,t=0时在A后面与A相距Δx=8.36m的质点B由静止开始运动,质点B运动方向与A相同,其加速度随时间周期性变化,如图所示.求:
(1)质点B追上A之前两者间最大距离是多少?
(2)B开始运动后经多少时间追上A
19.交通新规“礼让行人”已为广大司机所遵守。小张驾驶汽车沿平直公路匀速行驶时,前方突然有行人过马路,小张紧急刹车(刹车过程视为匀变速直线运动),恰好在离人行横道1m处停下。从刹车开始计时,若在连续每秒的时间内,汽车的位移依次为18m、14m、10m,……,求:
(1)汽车刚刹车时的速度大小;
(2)汽车刚刹车时离人行横道的距离为多少。
20.汽车开出时开始计时,下表给出了不同时刻该汽车的速度。若假设该汽车从静止开始先做匀加速直线运动。然后做匀速直线运动。最后做匀减速直线运动直至停止。求。
(1)汽车从开出到停止总共经历的时间;
(2)汽车通过的总路程。
时刻/s 1.0 2.0 3.0 5.0 7.0 9.5 10.5
速度 3 6 9 12 12 9 3
21.某有雾天气下,能见度为x=36m.若汽车刹车时加速度为a=-6 m/s2(运动方向为正方向),为避免与前方停在路中的故障车相撞.
(1)若不考虑司机的反应时间,汽车最多可以多大速度行驶?
(2)若考虑司机的反应时间为0.5s,汽车最多可以多大速度行驶?
22.矿井里的升降机从静止开始做匀加速运动,经过,它的速度达到;然后做匀速运动,经过,再做匀减速运动,后停止。(规定向上为正方向)则:
(1)画出它的速度—时间()图像。
(2)分别求出加速阶段的加速度和减速阶段的加速度。
23.一物体做初速度为零的匀加速直线运动,加速度为a=2 m/s2,求:
(1)第5 s末物体的速度多大?
(2))前4 s的位移多大?
(3)第4 s内的位移多大?
试卷第1页,共3页
试卷第1页,共3页
参考答案
1.AD
【详解】
AB. 根据x3 x1=2aT2得,加速度a= =0.2m/s2,故A正确,B错误;
C. 第2次、第3次闪光时间间隔内的位移x2=x1+aT2=0.4+0.2×1m=0.6m,则第2次闪光的瞬时速度v2= =0.5m/s,
则第1次闪光时质点的速度v1=v2 aT=0.5 0.2×1=0.3m/s.故C错误,D正确.
故选AD.
点睛:根据连续相等时间内的位移之差是一恒量求出质点的加速度,根据某段时间内的平均速度等于中间时刻的瞬时速度求出第2次闪光的速度,从而结合速度时间公式求出第1次闪光时的速度.
2.ACD
【详解】
A.平均速度定义是质点的位移与所用时间的比值,由于三种路径都是从A到B,即位移相同,时间相等,所以平均速度相同, 故A正确;
BC.平均速率等于路程除以时间,由于三种路径的路程不同,时间相同,所以平均速率不等;而沿弦AB运动的路程最短,则平均速率最小,故B错误,C正确;
D. 质点沿弦AB做直线运动,速度方向不变,故D正确。
故选ACD。
3.ABD
【详解】
A.x-t图象的斜率等于速度,由图可知,a车的速度不变,做匀速直线运动,速度为
故A正确;
B.由图可知,在t=3s时a车与b车位移大小相同,故a车与b车相遇,同时t=3s时直线a和曲线b相切,故此时a车与b车速度相同,故B正确;
C.在1-3s内,对b车有
其中
联立解得
因为b车速度的大小在减少,故做减速运动,故C错误;
D.设b车的初速度为v0,对b车,由
v0+at=vb
解得
v0=8m/s
t=3s时,a车的位移为
xa=vat=6m
b车的位移为
t=3s时,a车和b车到达同一位置,故t=0时,a车和b车的距离为
x0=xb-xa=9m
故D正确;
故选ABD。
4.AC
【详解】
物体做初速度为零的匀加速直线运动,由得,所以物体到达各点的速率之比
同时有
,,,
由可知,
因
即
vB为AE段的中间时刻的速度,故
故选AC。
5.ABC
【详解】
A.根据图像可知,a图象的速度随位移增大而增大,b图象的速度随位移增大而减小,所以图象a表示质点甲的运动,当x=0时,乙的速度为6m/s,即质点乙的初速度v0=6m/s,故A正确;
BCD.设质点乙、甲先后通过x=6m处时的速度均为v,对质点甲有
v2=2a1x
对质点乙有
v2-v02=-2a2x
联立可得
a1+a2=3m/s2
当质点甲的速度v1=8m/s、质点乙的速度v2=2m/s时,两质点通过相同的位移均为x'。对质点甲有
v12=2a1x'
对质点乙有
v22-v02=-2a2x'
可得
a1=2a2
联立方程,解得
a1=2m/s2,a2=1m/s2
故BC正确;
D.图线a、b的交点表示两质点在同一位置,但不是同时, 故D错误。
故选ABC。
6.BD
【详解】
A.根据
得质点的加速度
a=2m/s2,
第1s内的位移为
故A错误;
B.第2s末的速度为
所以前2s内的平均速度
故B正确;
C.任意相邻1s内的位移差
故C错误;
D.任意1s内速度的增量
△v=at=2×1m/s=2m/s
故D正确。
7.AD
【分析】
位移时间关系图线反映位移随时间的变化规律,图线的斜率表示速度的大小,位移等于纵坐标的变化量.
【详解】
A、在t1到t2这段时间内,b图线的斜率不是一直大于a图线的斜率,所以b车的速率不是一直比a车大;故A正确.
B、在时刻t1,a图象的斜率为正,b图象的斜率也为正,而斜率表示速度,知两车运动方向相同;故B错误.
C、图线切线的斜率表示速度,在t1到t2这段时间内,b车图线斜率先减小后增大,则b车的速率先减小后增加;故C错误.
D、在时刻t1,a、b两车的位置坐标相同,开始a的位移大于b的位移,知b追上a;故D正确.
故选AD.
【点睛】
解决本题的关键知道位移时间图线的物理意义,知道图线的斜率表示速度的大小,能够通过图线得出运动的方向.
8.AC
【详解】
A.由匀变速直线运动的规律,即
可知,在第1s内的位移为1m,第3s内的位移为5m,可得
A正确;
B.前4s内的位移为
平均速度
B错误;
C.物体做初速度为0的匀加速直线运动,第1s内、第2s内、第3s内的位移之比为1∶3∶5,C正确;
D.由公式
可得物体在第1s末、第2s末、第3s末的速度之比为1∶2∶3,D错误。
故选AC。
9.B
【详解】
汽车刹车到停止所需的时间:
所以在6s内的位移等于5s内的位移:
A.120m,与结论不相符,选项A错误;
B.50m,与结论相符,选项B正确;
C.48m,与结论不相符,选项C错误;
D.100m,与结论不相符,选项D错误;
10.D
【详解】
石子做自由落体运动,自由落体运动是初速度为零的匀加速直线运动;初速度为零的匀加速直线运动,在第1T、第2T、第3T时间内的位移之比为1:3:5;已知石子在第1s内的位移大小是5m,则它在第3s内的位移大小是25m。
故选D。
11.B
【详解】
飞机停下来所需的时间为
所以飞机10s就停下来,则12s内滑行的距离为
故选B。
12.B
【详解】
A.根据可得小球的加速度大小为
选项A错误;
B.小球在B点时的速度
选项B正确;
D.小球到达B点时的时间
即该照片是距第一个小球释放后0.25s拍摄的,选项D错误;
C.若最高点的球刚释放时,则最高处2球之间的距离为
根据初速度为零的匀变速直线运动的规律可知,各个球之间的距离之比为1:3:5:7……,则各个球之间的距离分别为2cm,6cm,10cm,14cm,18cm…….,因为O点与斜面底端距离为35cm,而前5个球之间的距离之和为32cm,斜面上最多有5个球,选项C错误。
故选B。
13.D
【详解】
ABC.各时间段内位移随时间增加,但由题意无法确定各段时间内的具体运动形式,故无法判断物体是否做的匀加速直线运动;同时也无法得出物体的初速度及加速度;在相等时间内的位移之差是一恒量,可知物体可能做匀加速直线运动,故ABC错误。
D.物体在5s内的位移为
则物体在5s内的平均速度为
故D正确。
故选D。
14.B
【详解】
设甲做匀速直线运动的速度为v,乙先加速后减速,在运动的过程中速度大于v,则整个过程中的平均速度大于v;丙先减速后加速,在运动过程中的速度小于v,则整个过程中的平均速度小于v。根据,知乙的运动时间最短,所以乙车先经过下一个路标。
故选B。
15.B
【详解】
由图可知,车身对应图上3小格,而车身的长度是4.5m,每一格表示1.5m
则第一段位移大小为
x1=8×1.5m=12m
第二段位移为
x2=13.6×1.5m=20.4m
根据推论
△x=aT2
则有
x2 x1=aT2
其中T=2s,解得
故B正确,ACD错误。
故选B。
16.B
【详解】
根据运动学定律
解得,故B正确,ACD错误。
故选B。
17.(1)会相撞;(2)10m/s,56.7m
【详解】
(1)轿车B在制动前做匀速直线运动,发生的位移
轿车B减速过程有
减速过程的位移
而货车A与隧道口的距离
因
所以轿车B会与停在前面的货车A相撞。
(2)由速度—位移关系
得相撞前B的速度
若两车不相撞,货车A与隧道口距离应为
18.(1)18.61m (2) 10.6s
【详解】
(1)质点B的速度为5m/s时,A、B之间的距离最大,质点B如果以2m/s2的加速度做匀加速运动,设速度达到5m/s需要的时间为Δt由运动学公式得
由质点B加速度与时间的关系知,经过时间t1=4.5s时,A、B之间的距离最大.在时间t1内质点A发生的位移
设ΔT=1s质点B在第1s内的位移
质点B在第2s内的位移
质点B在第3s内的位移
质点B在第4s内的位移
质点B在4-4.5s时间内的位移
所以
故A、B之间的最大距离
(2)设经历时间t(t为正整数)后B追上A,此时A的位移为xA′=vAt;
B的位移
因为,此式无整数解,但可求得10sB发生位移
故在10s后,B需比A多发生的位移
△x′=△x+xA1-xB1=3.36m
设10s后需时间t′,B追上A,则
计算得出t′=0.6s,故B出发后需经过时间
tB=10s+t′=10.6s
追上A.
19.(1);(2)51m
【详解】
(1)设汽车加速度大小为a,由
得
解得
刹车后前两秒的平均速度为
它刚好是刹车1s时的瞬时速度,根据
得
(2)根据
得
刹车距离为
所以刚刹车时,汽车距离行人行横道51m。
20.(1)11s;(2)96m
【详解】
(1)汽车匀减速运动的加速度
设汽车从3m/s经时间停止,则
故汽车从开出到停止总共经历的时间为。
(2)汽车匀加速运动的加速度
汽车匀加速运动的时间
汽车匀减速运动的时间
汽车匀速运动的时间
汽车匀速运动的速度为
则汽车总共运动的路程
21.(1)(2)
【详解】
试题分析:(1)汽车到达故障车所处位置时,速度为零,此时汽车速度最大,由匀变速直线运动的速度位移公式得:,
解得:;
(2)设汽车最多以速度v行驶.在司机的反应时间内汽车的位移大小为,汽车从刹车到停下通过的位移大小为
由题,恰好不发生相撞交通事故时,,则有,即:,解得,;
考点:考查了匀变速直线运动规律的应用
【名师点睛】在司机的反应时间内,司机还没有刹车,汽车保持原来的状态运动.本题是匀速直线运动和匀变速直线运动的综合,要分析通过两个过程的关系列式.
22.(1)见解析;(2)1m/s2,方向向上;1.5m/s2,方向向下
【详解】
(1)依题意,可画出如图所示图像
(2)加速阶段的加速度为
方向向上
减速阶段的加速度为
方向向下。
23.(1)10m/s;(2)16 m;(3)7 m
【详解】
(1)5s末物体的速度由
vt=v0+at1
代入数据解得
v1=10m/s
(2)根据位移时间公式
代入数据解得
m
(3)根据位移时间公式
可得第4s内的位移为
答案第1页,共2页
答案第1页,共2页