专题08 : 2021年北师大新版七年级(上) 4.4 角的比较 - 期末复习专题训练
一、选择题(共10小题)
1.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为( )
A.45° B.60° C.75° D.105°
2.如图,点O在直线AB上,射线OC平分∠DOB,若∠DOC=35°,则∠AOD等于( )
A.35° B.70° C.110° D.145°
3.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD的度数为( )
A.160° B.110° C.130° D.140°
4.如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
5.在图所示的4×4的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则( )
A.β<α<γ B.β<γ<α C.α<γ<β D.α<β<γ
6.下列说法正确的个数是( )
(1)连接两点之间的线段叫两点间的距离;
(2)两点之间,线段最短;
(3)若AB=2CB,则点C是AB的中点;
(4)角的大小与角的两边的长短无关.
A.1个 B.2个 C.3个 D.4个
7.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( )
A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B
8.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为( )
A.150° B.145° C.140° D.135°
9.下列说法:①若C是AB的中点,则AC=BC;②若AC=BC,则点C是AB的中点;③若OC是∠AOB的平分线,则∠AOC=∠AOB;④若∠AOC=∠AOB,则OC是∠AOB的平分线,其中正确的有( )
A.1个 B.3个 C.2个 D.4个
10.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=( )
A.15° B.45° C.15°或30° D.15°或45°
二、填空题(共5小题)
11.如图所示,在矩形纸片ABCD中,点M为AD边的中点,将纸片沿BM,CM折叠,使点A落在A1处,点D落在D1处.若∠1=30°,则∠BMC的度数为 .
12.如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于 度.
13.如图,AOB为一直线,OC,OD,OE是射线,则图中大于0°小于180°的角有 个.
14.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为 .
15.如图,点O是直线AD上一点,射线OC、OE分别是∠AOB,∠BOD的平分线,若∠AOC=28°,则∠COD= ,∠BOE= .
三、解答题(共5小题)
16.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.
17.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE= °;
(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;
(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?
18.已知∠AOB与∠BOC互为补角,OD是∠AOB的平分线,OE在∠BOC内,∠BOE=∠EOC,∠DOE=72°,求∠EOC的度数.
19.如图,OB为∠AOC的平分线,OD是∠COE的平分线.
(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD为多少度?
(2)如果∠AOE=140°,∠COD=30°,那么∠AOB为多少度?
20.如图,已知∠AOB是直角,OE平分∠AOC,OF平分∠BOC.
(1)若∠BOC=60°,求∠EOF的度数;
(2)若∠AOC=x°(x>90),此时能否求出∠EOF的大小,若能请求出它的数值;若不能,请用含x的代数式来表示.
专题08 : 2021年北师大新版七年级(上) 4.4 角的比较 - 期末复习专题训练
参考答案与试题解析
一、选择题(共10小题)
1.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为( )
A.45° B.60° C.75° D.105°
【解答】解:∵B、C、D三点在同一条直线上.
∴∠ACE=180°﹣60°﹣45°=75°.
故选:C.
2.如图,点O在直线AB上,射线OC平分∠DOB,若∠DOC=35°,则∠AOD等于( )
A.35° B.70° C.110° D.145°
【解答】解:∵射线OC平分∠DOB,
∴∠BOD=2∠BOC=2×35°=70°.
∴∠AOD=180°﹣∠BOD=180°﹣70°=110°.
故选:C.
3.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD的度数为( )
A.160° B.110° C.130° D.140°
【解答】解:∵∠AOC=80°,∠BOC=30°,
∴∠AOB=∠AOC﹣∠BOC=80°﹣30°=50°,
又∵∠BOD=80°,
∴∠AOD=∠AOB+∠BOD=50°+80°=130°.
故选:C.
4.如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:①∵∠AOB=∠COD=90°,
∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,
∴∠AOC=∠BOD,∴①正确;
②∵只有当OC,OB分别为∠AOB和∠COD的平分线时,∠AOC+∠BOD=90°,∴②错误;
③∵∠AOB=∠COD=90°,OC平分∠AOB,
∴∠AOC=∠COB=45°,则∠BOD=90°﹣45°=45°
∴OB平分∠COD,∴③正确;
④∵∠AOB=∠COD=90°,∠AOC=∠BOD(已证);
∴∠AOD的平分线与∠COB的平分线是同一条射线,∴④正确;
故选:C.
5.在图所示的4×4的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则( )
A.β<α<γ B.β<γ<α C.α<γ<β D.α<β<γ
【解答】解:由题意知:∠DGC=∠DCG=45°,
同理∠HGF=∠GHF∠=45°,
又∵∠DGC+∠HGF+γ=180°,
∴γ=90°,
由图可知α>90°,β<90°,
∴β<γ<α,
故选:B.
6.下列说法正确的个数是( )
(1)连接两点之间的线段叫两点间的距离;
(2)两点之间,线段最短;
(3)若AB=2CB,则点C是AB的中点;
(4)角的大小与角的两边的长短无关.
A.1个 B.2个 C.3个 D.4个
【解答】解:(1)连接两点之间的线段的长度叫两点间的距离,则命题错误;
(2)两点之间,线段最短,正确;
(3)当C在线段AB上,且AB=2CB时,点C是AB的中点,当C不在线段AB上时,则不是中点,故命题错误;
(4)角的大小与角的两边的长短无关,正确.
故正确的有(2)、(4).
故选:B.
7.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( )
A.∠A>∠B>∠C B.∠B>∠A>∠C C.∠A>∠C>∠B D.∠C>∠A>∠B
【解答】解:∵∠A=20°18′,∠B=20°15″,
∴∠A>∠B,
∵∠C=20.25°=20°15′,
∴∠B<∠C<∠A,
∴∠A>∠C>∠B.
故选:C.
8.如图,已知∠AOC=∠BOD=80°,∠BOC=25°,则∠AOD的度数为( )
A.150° B.145° C.140° D.135°
【解答】解:∵∠AOC=∠BOD=80°,∠BOC=25°,
∴∠AOB=∠AOC﹣∠BOC=80°﹣25°=55°,
∴∠AOD=∠BOD+∠AOB=80°+55°=135°,
故选:D.
9.下列说法:①若C是AB的中点,则AC=BC;②若AC=BC,则点C是AB的中点;③若OC是∠AOB的平分线,则∠AOC=∠AOB;④若∠AOC=∠AOB,则OC是∠AOB的平分线,其中正确的有( )
A.1个 B.3个 C.2个 D.4个
【解答】解:①若C是AB的中点,则AC=BC,该说法正确;
②若AC=BC,则点C不一定是AB的中点,该说法错误;
③若OC是∠AOB的平分线,则∠AOC=∠AOB,该说法正确;
④若∠AOC=∠AOB,则OC不一定是∠AOB的平分线,该说法错误;
故选:C.
10.如图∠AOB=60°,射线OC平分∠AOB,以OC为一边作∠COP=15°,则∠BOP=( )
A.15° B.45° C.15°或30° D.15°或45°
【解答】解:∵∠AOB=60°,射线OC平分∠AOB,
∴∠AOC=∠BOC=AOB=30°,
又∠COP=15°
①当OP在∠BOC内,
∠BOP=∠BOC﹣∠COP=30°﹣15°=15°,
②当OP在∠AOC内,
∠BOP=∠BOC+∠COP=30°+15°=45°,
综上所述:∠BOP=15°或45°.
故选:D.
二、填空题(共5小题)
11.如图所示,在矩形纸片ABCD中,点M为AD边的中点,将纸片沿BM,CM折叠,使点A落在A1处,点D落在D1处.若∠1=30°,则∠BMC的度数为 105° .
【解答】解:由折叠,可知∠AMB=∠BMA1,∠DMC=∠CMD1.
因为∠1=30°,所以∠AMB+∠DMC=∠AMA1+∠DMD1=×150°=75°,
所以∠BMC的度数为180°﹣75°=105°.
故答案为:105°
12.如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于 135 度.
【解答】解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,
∴∠COD=90°(互为补角)
∵OM,ON分别是∠AOC,∠BOD的平分线,
∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)
∴∠MON=90°+45°=135°.
故答案为135.
13.如图,AOB为一直线,OC,OD,OE是射线,则图中大于0°小于180°的角有 9 个.
【解答】解:大于0°小于180°的角有
∠AOE,∠AOD,∠AOC,∠EOD,∠EOC,∠EOB,∠DOC,∠DOB,∠COB.
共9个.
故答案为:9.
14.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为 120° .
【解答】解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,
∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,
∴∠COD=0.5x=20°,
∴x=40°,
∴∠AOB的度数为:3×40°=120°.
故答案为:120°.
15.如图,点O是直线AD上一点,射线OC、OE分别是∠AOB,∠BOD的平分线,若∠AOC=28°,则∠COD= 152° ,∠BOE= 62° .
【解答】解:∵∠AOC+∠COD=180°,∠AOC=28°,
∴∠COD=152°;
∵OC是∠AOB的平分线,∠AOC=28°,
∴∠AOB=2∠AOC=2×28°=56°,
∴∠BOD=180°﹣∠AOB=180°﹣56°=124°,
∵OE是∠BOD的平分线,
∴∠BOE=∠BOD=×124°=62°.
故答案为:152°、62°.
三、解答题(共5小题)
16.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.
【解答】解:∵∠AOB=90°,OC平分∠AOB,
∴∠COB=∠AOB=45°,
∵∠COD=90°,
∴∠BOD=45°,
∵∠BOD=3∠DOE,
∴∠DOE=15°,
∴∠BOE=30°,
∴∠COE=∠COB+∠BOE=45°+30°=75°.
17.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)
(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE= 30 °;
(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;
(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?
【解答】解:(1)∵∠BOE=∠COE+∠COB=90°,
又∵∠COB=60°,
∴∠COE=30°,
故答案为:30;
(2)∵OE平分∠AOC,
∴∠COE=∠AOE=COA,
∵∠EOD=90°,
∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,
∴∠COD=∠DOB,
∴OD所在射线是∠BOC的平分线;
(3)设∠COD=x,则∠AOE=5x.
有两种情况:①如图1,OD在∠AOC内部时,
∵∠AOE+∠DOE+∠COD+∠BOC=180°,∠DOE=90°,∠BOC=60°,
∴5x+90°+x+60°=180°,
解得x=5°,
即∠COD=5°.
∴∠BOD=∠COD+∠BOC=5°+60°=65°;
②如图2,OD在∠BOC的内部时,如图2,
∵∠AOC+∠BOC=180°,∠DOE=90°,∠BOC=60°,∠COD=x°,∠AOE=5x°,
∴5x+90﹣x+60=180,
解得:x=7.5,
即∠COD=7.5°,
∵∠BOC=60°,
∴∠BOD=60°﹣7.5°=52.5°,
∴∠BOD的度数为65°或52.5°.
18.已知∠AOB与∠BOC互为补角,OD是∠AOB的平分线,OE在∠BOC内,∠BOE=∠EOC,∠DOE=72°,求∠EOC的度数.
【解答】解:设∠EOB=x,则∠EOC=2x,
则∠BOD=(180°﹣3x),
则∠BOE+∠BOD=∠DOE,
即x+(180°﹣3x)=72°,
解得x=36°,
故∠EOC=2x=72°.
19.如图,OB为∠AOC的平分线,OD是∠COE的平分线.
(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD为多少度?
(2)如果∠AOE=140°,∠COD=30°,那么∠AOB为多少度?
【解答】解:(1)如图,∵OB为∠AOC的平分线,OD是∠COE的平分线,
∴∠AOB=∠BOC,∠DOE=∠DOC,
∴∠BOD=∠BOC+∠DOC=∠AOB+∠DOE=40°+30°=70°;
(2)如图,∵OD是∠COE的平分线,∠COD=30°,
∴∠EOC=2∠COD=60°.
∵∠AOE=140°,∠AOC=∠AOE﹣∠EOC=80°.
又∵OB为∠AOC的平分线,
∴∠AOB=∠AOC=40°.
20.如图,已知∠AOB是直角,OE平分∠AOC,OF平分∠BOC.
(1)若∠BOC=60°,求∠EOF的度数;
(2)若∠AOC=x°(x>90),此时能否求出∠EOF的大小,若能请求出它的数值;若不能,请用含x的代数式来表示.
【解答】解:(1)∵OE平分∠AOC,OF平分∠BOC.
∠AOB是直角,∠BOC=60°
∴∠COE=∠AOC=75°,∠COF=∠BOC=30°
∴∠EOF=∠COE﹣∠COF=45°;
(2)由(1)得:
∠EOF=∠AOC﹣∠BOC=(∠AOC﹣∠BOC)=∠AOB=45°.