2021-2022学年苏科版九年级上册 数学第三章数据的集中趋势和离散程度 单元测试(word版含解析)

文档属性

名称 2021-2022学年苏科版九年级上册 数学第三章数据的集中趋势和离散程度 单元测试(word版含解析)
格式 docx
文件大小 273.9KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2022-01-20 16:03:43

图片预览

文档简介

(江苏地区)2021-2022学年九年级(上册)数学同步
第三章数据的集中趋势和离散程度
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.如果你和其余6人进入了八年级速算比赛的总决赛,你想知道自己是否能进入前3名,只需要了解自己的成绩以及全部成绩的( )
A.平均数 B.众数 C.中位数 D.方差
2.12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是( )
A.中位数是8环 B.平均数是8环
C.众数是8环 D.极差是4环
3.2021年4月27日11时20分,中国在太原卫星发射中心用长征六号运载火箭,以“一箭九星”的方式成功将齐鲁一号、齐鲁四号、佛山一号等3颗主星送入预定轨道.此次任务还搭载发射了中安国通一号、天启星座09星、起源太空NE0﹣1卫星、泰景二号01星、金紫荆一号卫星、灵鹊一号D02卫星等6颗卫星.为使更多的学生了解航天科技知识,某市打算举办一场航天知识竞赛,某校为选拔学生参加市里举办的航天知识竞赛,共组织了三次选拔测试(百分制),学校对排名前四名同学的成绩进行了分析,并绘制统计表如下:
甲同学 乙同学 丙同学 丁同学
三次测试的平均成绩/分 95 95 94 94
方差 0.05 0.26 0.28 0.05
根据表中数据,该校想选择成绩好且发挥稳定的同学去参加市里比赛,应选择( )
A.甲同学 B.乙同学 C.丙同学 D.丁同学
4.数据a,a,b,c,a,c,d的平均数是( )
A. B.
C. D.
5.某校八年级人数相等的甲、乙、丙三个班,同时参加了一次数学测试,对成绩进行了统计分析,平均分都是72分,方差分别为,,,则成绩波动最小的班级( )
A.甲 B.乙 C.丙 D.无法确定
6.某校随机抽查了10名学生的体育成绩,得到的结果如表:
成绩(分) 46 47 48 49 50
人数(人) 1 2 3 2 2
下列说法正确的是( )
A.这10名同学的体育成绩的方差为50
B.这10名同学的体育成绩的众数为50分
C.这10名同学的体育成绩的中位数为48分
D.这10名同学的体育成绩的平均数为48分
7.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是6,根据以上数据,对甲,乙射击成绩的正确判断是( )
A.甲射击成绩比乙稳定 B.乙射击成绩比甲稳定
C.甲,乙射击成绩稳定性相同 D.甲、乙射击成绩稳定性无法比较
8.班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:
甲 乙 丙
平均数/分 96 95 97
方差 0.4 2 2
丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择( )
A.甲 B.乙 C.丙 D.丁
9.在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是( )
A.平均数是89 B.众数是93
C.中位数是89 D.方差是2.8
10.某校女子排球队队员的平均年龄分布如表,该校女子排球队队员的平均年龄是(结果取整数)(  )
年龄/岁 13 14 15 16
频数 1 3 5 3
A.13岁 B.14岁 C.15岁 D.16岁
二、填空题
11.一组数据:3、4、4、5、5、6、8,这组数据的中位数是 _____.
12.若一组数据,,…的平均数是2,方差是1.则,,…的平均数是_______,方差是_______.
13.某次测试中,小颖语文,数学两科分数共计176分,如果再加上英语分数,三科的平均分就比语文和数学的两科平均分多3分,则小颖的英语成绩是______分.
14.我区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为95分,面试成绩为85分,那么吴老师的总成绩为__________分.
15.一组数据、、…、的方差是0.8,则另一组数据、、…、的方差是________.
16.甲、乙两班各有45人,某次数学考试成绩的中位数分别是88分和90分,若90分及90分以上为优秀,则优秀人数多的班级是________.
17.甲、乙两射击运动员10次射击训练的平均成绩恰好都是8.5环,方差分别是,则在本次测试中,_______运动员的成绩更稳定(填“甲”或“乙”).
18.某校男子篮球队队员的年龄如下表所示,那么他们的平均年龄是_________岁.
年龄 13 14 15 16
人数 1 5 5 1
三、解答题
19.甲、乙两班各10名同学参加“国防知识”比赛,其预赛成绩如下表:
6分 7分 8分 9分 10分
甲班 1人 2人 4人 2人 1人
乙班 2人 3人 1人 1人 3人
(1)填写下表:
平均数 中位数 众数
甲班 8 8
乙班 7和10
(2)利用方差判断哪个班的成绩更加稳定?
20.某校初三(1)班、(2)班各有49名学生,两班在一次数学测验中的成绩统计如下表:
班级 平均分 众数 中位数 标准差
一班 79 70 87 19.8
二班 79 70 79 5.2
(1)请你对下面的一段话给予简要分析:初三(1)班的小刚回家对妈妈说:“昨天的数学测验,全班平均79分,得70分的人最多,我得了85分,在班里可算上游了!”
(2)请你根据表中数据,对这两个班的测验情况进行简要分析,并提出教学建议.
21.甲、乙两人在相同的情况下各打靶6次,每次打靶的成绩依次如下(单位:环):
甲:10,7,8,7,8,8
乙:5,6,10,8,9,10
(1)甲成绩的众数_________,乙成绩的中位数_________.
(2)计算乙成绩的平均数和方差;
(3)已知甲成绩的方差是1环,则_________的射击成绩离散程度较小.(填“甲”或“乙”)
22.某中学为了解八年学级生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:
3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4
根据以上数据,得到如下不完整的频数分布表:
次数 1 2 3 4 5 6
人数 1 2 a 6 b 2
(1)表格中的a=   ,b=   ;
(2)在这次调查中,参加志愿者活动的次数的众数为    ,中位数为    ;
(3)若该校八年级共有700名学生,根据调查统计结果,估计该校八年级学生参加志愿者活动的次数大于4次的人数.
23.某跳远队准备从甲、乙两名运动员中选取成绩稳定的一名参加比赛.下表是这两名运动员10次测验成绩(单位:m).
甲 5.85 5.93 6.07 5.91 5.99
6.13 5.98 6.05 6.00 6.19
乙 6.11 6.08 5.83 5.92 5.84
5.81 6.18 6.17 5.85 6.21
你认为应该选择哪名运动员参赛?为什么?
24.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9
(1)这组数据的中位数是____,众数是____;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有2000位居民,试估计该小区居民一周内使用共享单车的总次数.
25.某校开展了以“不忘初心,奋斗新时代”为主题的读书活动,校德育处对本校八年级学生九月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了抽样调查,随机抽取八年级部分学生,对他们的“读书量”(单位:本)进行了统计,并将统计结果绘制成了如下统计图:
(1)本次所抽取学生九月份“读书量”的众数为______本,中位数为______本;
(2)求本次所抽取学生九月份“读书量”的平均数.
26.某县教育局组织了一次经典诵读比赛,中学组有两队各10人的比赛成绩如下表:
甲 7 8 9 7 10 10 9 10 10 10
乙 10 8 7 9 8 10 10 9 10 9
(1)甲队成绩的中位数是 分,乙队成绩的众数是 分;
(2)计算乙队的平均成绩;
(3)如果要从两个队中选择一对参加市级比赛,你认为安排哪个队更容易获奖.
27.为响应“双减”政策,老师们都精心设计每天的作业,兴华学校调查了部分学生每天完成作业所用时间,并用得到的数据绘制了如下不完整的统计图,根据图中信息完成下列问题:
(1)将条形统计图补充完整;
(2)抽查学生完成作业所用时间的众数是______;
(3)求所有被抽查学生完成作业所用的平均时间.
28.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:
序号 1号 2号 3号 4号 5号 6号
笔试成绩/分 85 92 84 90 84 80
面试成绩/分 90 88 86 90 80 85
根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(综合成绩的满分仍为100分)
(1)这6名选手笔试成绩的众数是________分.
(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.
(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.
29.某数学课外小组开展数学闯关游戏(游戏一共10关),根据活动结果制成如下两幅尚不完整的统计图.
(1)求;
(2)计算闯9关的人数并补充完整条形统计图;
(3)求数学课外活动小组的平均闯关次数;
(4)再加入名同学闯关,已知这名同学的闯关次数均大于7,若加入后闯关次数的中位数与原闯关次数的中位数相等,则最多是________名.
试卷第2页,共2页
试卷第1页,共1页
参考答案
1.C
【解析】解:由于总共有7个人,第4位选手的成绩是中位数,要判断是否进入前3名,
故应知道自己的成绩和中位数.
故选:C.
2.C
【解析】解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;
B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;
C.众数是7环和9环,故本选项符合题意;
D.极差为:10-6=4(环),故本选项不合题意;
故选:C.
3.A
【解析】解:甲同学,乙同学成绩的平均数较大,
甲同学,乙同学成绩较好,
甲同学的方差乙同学的方差,
甲同学比较稳定,
应该选择甲同学,
故选:A.
4.B
【解析】解:∵数据:a,b,c,d的权数分别是3,1,2,1
∴这组数据的加权平均数是.
故选B.
5.C
【解析】解:∵,,,
∴,
∴成绩波动最小的班级是:丙班.
故选:C.
6.C
【解析】这组数据的平均数为×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,
这组数据的方差为×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,
∵这组数据中,48出现的次数最多,
∴这组数据的众数是48,故B选项错误,
∵这组数据中间的两个数据为48、48,
∴这组数据的中位数为=48,故C选项正确,
故选:C.
7.A
【解析】解:这组数中的众数是8
,,中至少有两个是8,假设a和b是8,
平均数是6,
∴,解得,


甲射击成绩比乙稳定.
故选:A.
8.D
【解析】解:根据题意,
丁同学的平均分为:,
方差为:;
∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小,
∴应该选择丁同学去参赛;
故选:D.
9.D
【解析】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,
从小到大排列为88,89,90,90,93,
∴平均数为,众数为90,中位数为90,
故选项A、B、C错误;
方差为,
故选项D正确.
故选:D.
10.C
【解析】解:根据题意得:=15(岁),
答:该校女子排球队队员的平均年龄是15岁;
故选:C.
11.5
【解析】解:把这组数据从小到大排列:3、4、4、5、5、6、8,
最中间的数是5,
则这组数据的中位数是5.
故答案为:5.
12.8 9
【解析】解:∵数据x1,x2,…xn的平均数是2,
∴数据3x1+2,3x2+2,…+3xn+2的平均数是3×2+2=8;
∵数据x1,x2,…xn的方差为1,
∴数据3x1,3x2,3x3,……,3xn的方差是1×32=9,
∴数据3x1+2,3x2+2,…+3xn+2的方差是9.
故答案为:8、9.
13.97
【解析】解:(176÷2+3)×3-176
=(88+3)×3-176
=91×3-176
=273-176
=97(分).
答:小明的外语成绩是97分.
故答案为:97.
14.91
【解析】解:吴老师的总成绩为95×60%+85×40%=57+34=91(分).
故答案是91.
15.0.8
【解析】设数据x1,x2,…,xn的平均数设为a,
∴数据x1+1、x2+1、…、xn+1的平均数为==a+1,
∴数据x1+1、x2+1、…、xn+1的方差为{[(x1+1)﹣(a+1)]2+[(x2+1)﹣(a+1)]2+…+(xn+1)﹣(a+1)]}2=[(x1﹣a)2+(x2﹣a)2+…(xn﹣a)2],
∵数据、、…、的方差为[(x1﹣a)2+(x2﹣a)2+…+(xn﹣a)2]=0.8,
∴数据x1+1、x2+1、…、xn+1的方差为0.8.
故答案为:0.8
16.乙班
【解析】根据中位数的定义:将甲、乙两班的45人的数学成绩,从小到大排列后,第23人的成绩就是中位数.甲班为88分,乙班为90分.
若90分及90分以上为优秀,则优秀人数多的班级是乙班,至少是23人.
故答案为:乙班.
17.甲
【解析】解:∵,
∴,
∴甲运动员比乙运动员的成绩稳定;
故答案为:甲.
18.14.5
【解析】解:他们的平均年龄是:(13×1+14×5+15×5+16×1)÷12=14.5(岁);
故答案为:14.5.
19.(1)8;8;7.5;(2)甲班的成绩更加稳定
【解析】解:(1)甲班的众数为:8;
乙班的平均数为:;
乙班的中位数为:;
故答案为:8;8;7.5;
(2)甲班的方差为:

乙班的方差为:

∵,
∴,
∴甲班的成绩更加稳定;
20.(1)见解析;(2)见解析.
【解析】解:(1)由中位数可知,85分排在第25位之后,从位次上讲不能说85分是上游;但是根据小刚的分数以及全班的平均分以及全班分数的众数可以看出小刚的成绩应该算是上游,且小刚得了85分,说明他对这段的学习内容掌握较好,从掌握学习内容上讲也可以说属于上游;
(2)初三(1)班成绩中位数为87,说明高于87分的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习有困难者的帮助;
初三(2)班的中位数和平均分均为79分,标准差又很小,说明学生之间差别较小,学习很差的学生少,但学习优秀的学生也很少,建议采取措施提高优秀率.
21.(1)8,;(2)乙的平均数,方差;(3)甲
【解析】解:(1)甲打靶的成绩中8环出现3次,次数最多,
所以甲成绩的众数是8环;
将乙打靶的成绩重新排列为5、6、8、9、10、10,
所以乙成绩的中位数为,
故答案为:8、8.5;
(2)乙成绩的平均数为,
方差为;
(3)甲成绩的方差为1环,乙成绩的方差为环,
甲成绩的方差小于乙,
甲的射击成绩离散程度较小.
22.(1)4,5;(2)4,4;(3)245人
【解析】解:(1)由所给数据可知:次数为3的人数有4人,即;次数为5的人数有5人,即,
故答案为:4,5;
(2)由表格可知次数为4的人数最多,即参加志愿者活动的次数的众数为4,
∵一共有20名学生参加调查,
∴中位数为次数排在第10位和第11位的两个数据的平均数,即,
故答案为:4,4;
(3)由表格可知,样本中一共有5+2=7名学生参加志愿者活动的次数大于4次,
∴估计该校八年级学生参加志愿者活动的次数大于4次的人数为人.
23.选择运动员甲参赛,他的成绩更稳定.
【解析】解:∵甲的平均数是:×(5.85+5.93+6.07+5.91+5.99+6.13+5.98+6.05+6.00+6.19)=6,
乙的平均数是:×(6.11+6.08+5.83+5.92+5.84+5.81+6.18+6.17+5.85+6.21)=6,
∴S甲2=[(5.85-6)2+(5.93-6)2+(6.07-6)2+(5.91-6)2+(5.99-6)2+(6.13-6)2+(5.98-6)2+(6.05-6)2+(6.00-6)2+(6.19-6)2]≈0.00954,
S乙2=[(6.11-6)2+(6.08-6)2+(5.83-6)2+(5.92-6)2+(5.84-6)2+(5.81-6)2+(6.81-6)2+(6.17-6)2+(5.85-6)2+(6.21-6)2]≈0.02204,
∴S2甲<S2乙,
∴应该选择甲运动员参赛.
24.(1)16;17;(2)14次;(3)28000次
【解析】解:(1)按照从小到大的顺序新排列后,第5、第6个数分别是15和17,
所以中位数是(15+17)÷2=16,
因为17出现了3次,出现的次数最多,
所以众数是17,
故答案是16,17;
(2)根据题意得:
×(0+7+9+12+15+17×3+20+26)=14(次),
答:这10位居民一周内使用共享单车的平均次数是14次;
(3)根据题意得:
2000×14=28000(次)
答:该小区居民一周内使用共享单车的总次数为28000次.
25.(1)3;3;(2)本次所抽取学生九月份“读书量”的平均数为3本.
【解析】解:(1)从条形统计图中可得:有21人“读书量”为3本,人数最多,
∴众数为:3;
抽取的学生总数为:人,
第30、31人“读书量”均为3本,
∴中位数为:3;
故答案为:3;3;
(2)学生“读书量”的总数为:
(本),
抽取的学生总数由(1)可得:60人,
平均数为:(本),
∴本次所抽取学生九月份“读书量”的平均数为3本.
26.(1)9.5,10;(2)9;(3)甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,所以乙队的成绩更加稳定,选择乙
【解析】解:(1)将甲队的成绩按从小到大的顺序排列为:7、7、8、9、9、10、10、10、10、10,位于第5位和第6位的分别为9和10 ,
∴甲队成绩的中位数是 分,
∵乙队成绩中10出现了4次,出现的次数最多,
∴乙队成绩的众数是10分;
(2)乙队的平均成绩为 分;
(3)甲队的平均成绩为 分,
甲队成绩的方差为
乙队成绩的方差为,
∴甲,乙的平均分均为9分,但是甲的方差为1.4,乙的方差为1,
∴乙队的成绩更加稳定,选择乙.
27.(1)见解析;(2);(3)小时
【解析】(1)总人数为:(人);
每天完成作业所用的平均时间为1.5小时的人数为:(人)
补充条形统计图如下:
(2)根据条形统计图可知完成作业所用的平均时间为1.5小时的人数最多,故学生每天完成作业所用的平均时间的众数为1.5,
(3)被抽查学生完成作业所用的平均时间为小时
28.(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)4号和2号
【解析】(1)84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;
故答案为84;
(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:
,解得:,
笔试成绩和面试成绩各占的百分比是40%,60%;
(3)2号选手的综合成绩是(分),
3号选手的综合成绩是(分),
4号选手的综合成绩是(分),
5号选手的综合成绩是(分),
6号选手的综合成绩是(分),
则综合成绩排序前两名人选是4号和2号
29.(1);(2)见解析;(3)7.1;(4)
【解析】解:(1)由题意得:
∴;
(2)由题意得:总人数为人,
∴闯9关的人数为,
补全统计图如下所示:
(3)由题意得数学课外活动小组的平均闯关次数为;
(4)原闯关成绩分别为:5,5,6,6,6,6,6,7,7,7,7,7,7,8,8,8,9,9,9,9,
∴原闯关成绩的中位数为,
∵再新加入名同学闯关后,若中位数仍然为7,要保证加入的人数最多,
∴需原成绩中最右侧的7排第13位,
∴最多加入5人,
故答案为:5.
答案第1页,共2页
答案第1页,共2页