人教版八年级数学 下册 第十八章 18.2.2 菱形 同步练习题(含答案)

文档属性

名称 人教版八年级数学 下册 第十八章 18.2.2 菱形 同步练习题(含答案)
格式 zip
文件大小 110.9KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-01-22 10:47:09

图片预览

文档简介

中小学教育资源及组卷应用平台
第十八章 平行四边形
18.2.2 菱形
一、选择题
1. 菱形的周长为100cm,一条对角线长为14cm,它的面积是( )
A. 168cm2 B. 336cm2 C. 672cm2 D. 84cm2
2.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是(  )
A.M(5,0),N(8,4) B.M(4,0),N(8,4)
C.M(5,0),N(7,4) D.M(4,0),N(7,4)
3.已知菱形ABCD中,AE⊥BC于E,若S菱形ABCD=24,且AE=6,则菱形的边长为( )
A.12 B.8 C.4 D.2
4.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为(  )
A.3:1 B.4:1 C.5:1 D.6:1
5.已知DE∥AC、DF∥AB,添加下列条件后,不能判断四边形DEAF为菱形的是( )
A. AD平分∠BAC
B. AB=AC=且BD=CD
C. AD为中线
D. EF⊥AD
填空题
6.菱形的两条对角线分别是6 cm,8 cm,则菱形的边长为_____,面积为______.
7.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为  cm2.
8.若菱形的两条对角线的比为3:4,且周长为20cm,则它的一组对边的距离等于_________cm,它的面积等于________cm2.
9.在菱形ABCD中,AB=4,AB边上的高DE垂直平分边AB,则BD=_____,AC=_____.
10.如图,四边形ABCD是平行四边形,AC、BD相交于点O,不添加任何字母和辅助线,要使四边形ABCD是菱形,则还需添加一个条件是 _________ (只需填写一个条件即可).
三、解答题
11.在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:
(1)两条对角线的长度;(2)菱形的面积.
12.如图,在菱形ABCD中,AE⊥BC,E为垂足.且BE=CE,AB=2.求:
(1)BAD的度数;
(2)对角线AC的长及菱形ABCD的周长.
13.如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0).
(1)求点D的坐标;
(2)求经过点C的反比例函数解析式.
14.如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE, CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
15.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.
(1)求证:△ABC≌△DCB;
(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.
16.如图,已知四边形ABCD为矩形,AD=20㎝、AB=10㎝。M点从D到A,P点从B到C,两点的速度都为2㎝/s;N点从A到B,Q点从C到D,两点的速度都为1㎝/s。若四个点同时出发。
(1)判断四边形MNPQ的形状。
(2)四边形MNPQ能为菱形吗?若能,请求出此时运动的时间;若不能,说明理由
17.如图,平行四边形ABCD的对角线相交于点O,且OC=OD,PD∥AC,PC∥BD,PD,PC相交于点P,四边形PCOD是菱形吗?试说明理由.
18.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.
(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?
(2)分别求出菱形AQCP的周长、面积.
参考答案:
一、1.B 2.A 3.C 4.C 5.C
二、6. 5 cm; 24 cm2
7.
8. 24
9.4;4 点拨:如图所示,因为DE垂直平分AB,
又因为DA=AB,所以DA=DB=4.所以△ABD是等边三角形,所以∠BAD=60°,
由已知可得AE=2.在Rt△AED中,AE2+DE2=AD2,即22+DE2=42,所以DE2=12,
所以DE=2,因为AC·BD=AB·DE,即AC·4=4×2,所以AC=4.
10.考点:菱形的判定;平行四边形的性质。
专题:开放型。
分析:菱形的判定方法有三种:
①定义:一组邻边相等的平行四边形是菱形;
②四边相等;
③对角线互相垂直平分的四边形是菱形.
所以可添加AB=BC.
解答:解:AB=BC或AC⊥BD等.
点评:本题考查了菱形的判定,答案不唯一.
三、11.(1)BD=12cm,AC=12cm (2)S菱形ABCD=72cm2
12.解:(1)∵AE⊥BC,且BE=CE,∴△ABC为等边三角形 ,∠B=∠D=60°,
∴∠BAD=∠BCD=120°.
(2)AC=AB=2,周长为:4×2=8.
13.考点:菱形的性质;待定系数法求反比例函数解析式。
专题:代数几何综合题;数形结合。
分析:(1)菱形的四边相等,对边平行,根据此可求出D点的坐标.
(2)求出C点的坐标,设出反比例函数的解析式,根据C点的坐标可求出确定函数式.
解答:解:(1)∵A(0,4),B(﹣3,0),
∴OB=3,OA=4,
∴AB=5.
在菱形ABCD中,AD=AB=5,
∴OD=1,
∴D(0,﹣1).
(2)∵BC∥AD,BC=AB=5,
∴C(﹣3,﹣5).
设经过点C的反比例函数解析式为y=.
把(﹣3,﹣5)代入解析式得:k=15,
∴y=.
点评:本题考查菱形的性质,四边相等,对边平行,以及待定系数法求反比例函数解析式.
14.考点:全等三角形的判定;菱形的判定。
专题:证明题。
分析:由题意可知三角形三线合一,结合SAS可得△ABE≌△ACE.四边形ABEC相邻两边AB=AC,只需要证明四边形ABEC是平行四边形的条件,当AE=2AD(或AD=DE或DE=AE)时,根据对角线互相平分,可得四边形是平行四边形.
解答:(1)证明:∵AB=AC,点D为BC的中点,
∴∠BAE=∠CAE,
∵AE=AE
∴△ABE≌△ACE(SAS).
(2)解:当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形
理由如下:
∵AE=2AD,∴AD=DE,
又∵点D为BC中点,
∴BD=CD,
∴四边形ABEC为平行四边形,
∵AB=AC,
∴四边形ABEC为菱形.
点评:本题考查了全等三角形和等腰三角形的性质和菱形的判定定理,比较容易.
15.考点:菱形的判定;全等三角形的判定。
专题:证明题;探究型。
分析:(1)由SSS可证△ABC≌△DCB;
(2)BN=CN,可先证明四边形BMCN是平行四边形,由(1)知,∠MBC=∠MCB,可得BM=CM,于是就有四边形BMCN是菱形,则BN=CN.
解答:(1)证明:如图,在△ABC和△DCB中,
∵AB=DC,AC=DB,BC=CB,
∴△ABC≌△DCB;(4分)
(2)解:据已知有BN=CN.证明如下:
∵CN∥BD,BN∥AC,
∴四边形BMCN是平行四边形,(6分)
由(1)知,∠MBC=∠MCB,
∴BM=CM(等角对等边),
∴四边形BMCN是菱形,
∴BN=CN.(9分)
点评:此题主要考查全等三角形和菱形的判定.
16.(1)平行四边形; (2)5秒 此时为各边中点 MQ=NP=AC=BD=MN=PQ
17.解:四边形PCOD是菱形.理由如下:
因为PD∥OC,PC∥OD,所以四边形PCOD是平行四边形.
又因为OC=OD,
所以平行四边形PCOD是菱形.
18.考点:菱形的性质;矩形的性质。
专题:计算题。
分析:(1)设经过x秒后,四边形AQCP是菱形,根据菱形的四边相等列方程即可求得所需的时间.
(2)根据第一问可求得菱形的边长,从而不难求得其周长及面积.
解答:解:(1)经过x秒后,四边形AQCP是菱形
由题意得16+x2=(8﹣x)2,解得x=3
即经过3秒后四边形是菱形.
(2)由第一问得菱形的边长为5
∴菱形AQCP的周长=5×4=20(cm)
菱形AQCP的面积=5×4=20(cm2)
点评:此题主要考查菱形的性质及矩形的性质的理解及运用.
21世纪教育网(www.21cnjy.com)