2021-2022学年鲁教版(五四制)八年级数学下册6.3正方形的判定与性质 自主提升训练(Word版含答案)

文档属性

名称 2021-2022学年鲁教版(五四制)八年级数学下册6.3正方形的判定与性质 自主提升训练(Word版含答案)
格式 docx
文件大小 205.9KB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2022-01-23 22:25:55

图片预览

文档简介

2021-2022学年鲁教版八年级数学下册《6-3正方形的判定与性质》自主提升训练(附答案)
1.如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE.则∠DAE的度数是(  )
A.15° B.20° C.12.5° D.10°
2.正方形具有而矩形不具有的性质是(  )
A.对角相等 B.对角线互相平分
C.对角线相等 D.对角线互相垂直
3.两条对角线相等且互相垂直平分的四边形是(  )
A.平行四边形 B.矩形 C.菱形 D.正方形
4.如图,三个边长均为的正方形重叠在一起,M、N是其中两个正方形对角线的交点,则两个阴影部分面积之和是(  )
A.1 B.2 C. D.4
5.下列说法中,正确的是(  )
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.矩形的对角线互相垂直
C.菱形的对角线互相垂直且平分
D.对角线互相垂直,且相等的四边形是正方形
6.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(  )
A.当AB=BC时,平行四边形ABCD是菱形
B.当AC⊥BD时,平行四边形ABCD是菱形
C.当AC=BD时,平行四边形ABCD是正方形
D.当∠ABC=90°时,平行四边形ABCD是矩形
7.如图,下列四组条件中,能判定 ABCD是正方形的有(  )
①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.
A.1个 B.2个 C.3个 D.4个
8.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣3,0),B(2,b),则正方形ABCD的面积是(  )
A.20 B.16 C.34 D.25
9.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下列四个结论:①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④AE+DF=AF+DE.其中正确的是(  )
A.②③ B.②④ C.①③④ D.②③④
10.如图,点E是正方形ABCD外一点,连接AE、BE和DE,过点A作AE的垂线交DE于点P.若AE=AP=1,PB=3.下列结论:①△APD≌△AEB;②EB⊥ED;③点B到直线AE的距离为;④S正方形ABCD=8+.则正确结论的个数是(  )
A.1 B.2 C.3 D.4
11.平行四边形ABCD对角线互相垂直,若添加一个适当的条件使四边形为正方形.则添加条件可以是   (只需添加一个).
12.如图,正方形ABCD的边长为,O是对角线BD上一动点(点O与端点B,D不重合),OM⊥AD于点M,ON⊥AB于点N,连接MN,则MN长的最小值为   .
13.如图,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,AB=10,则EF的长为   .
14.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN=45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC=90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是   .
15.如图,四边形ABCD是正方形,G是AB上的任意一点,CE⊥DG于点E,AF∥CE,且交DG于点F.求证:EF=DF﹣AF.
16.如图,四边形ABCD是正方形,对角线AC、BD相交于点F,∠E=90°,ED=EC.求证:四边形DFCE是正方形.
17.如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD
(1)判断四边形OCED是什么特殊四边形?并证明你的结论
(2)当AB、AD满足什么条件时,四边形OCED是正方形?请说明理由.
18.如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF
(1)求证:△EBF≌△DFC;
(2)求证:四边形AEFD是平行四边形;
(3)①△ABC满足   时,四边形AEFD是菱形.(无需证明)
②△ABC满足   时,四边形AEFD是矩形.(无需证明)
③△ABC满足   时,四边形AEFD是正方形.(无需证明)
19.如图,已知AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.
(1)求证:四边形AEDF是菱形;
(2)当△ABC满足什么条件时,四边形AEDF是正方形?并说明理由.
20.如图,点P在正方形ABCD的对角线AC上,点E在边BC上,且PE=PB.
(1)求证:PE=PD;
(2)试探究BC2,EC2,PE2三者之间满足的等量关系,并证明你的结论.
21.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.
(1)求证:CE=AD;
(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.
22.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE.交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.
①求证:矩形DEFG是正方形;
②探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.
23.如图,在平面直角坐标系中,正方形ABCD的顶点C、A分别在x、y轴上,A(0,6),E(0,2),点H、F分别在边AB、OC上,以H、E、F为顶点作菱形EFGH.
(1)当H(﹣2,6)时,求证:四边形EFGH是正方形;
(2)若F(﹣5,0),求点G的坐标.
参考答案
1.解:∵四边形ABCD是正方形,
∴∠ADC=90°,AD=DC,
∵△CDE是等边三角形,
∴DE=DC,∠EDC=60°,
∴∠ADE=90°+60°=150°,AD=ED,
∴∠DAE=∠DEA=(180°﹣∠ADE)=15°,
故选:A.
2.解:因为正方形的对角相等,对角线相等、垂直、且互相平分,矩形的对角相等,对角线相等,互相平分,
所以正方形具有而矩形不具有的性质是对角线互相垂直.
故选:D.
3.解:根据正方形的判别方法知,两条对角线互相垂直平分的四边形是菱形,且相等又可判定为正方形,故选D.
4.解:连接AN,DN,如图所示:
∵三个边长均为的正方形重叠在一起,M、N是其中两个正方形对角线的交点,
∴∠ANE+∠END=90°,∠DNF+∠END=90°,
∴∠ANE=∠DNF,
∵四边形ABCD是正方形,
∴∠EAN=∠FDN=45°,AN=DN
在△ANE和△DNF中
∴△ANE≌△DNF(ASA),
∴两个正方形阴影部分ENFD的面积=S正方形ABCD,
同理另外两个正方形阴影部分的面积也是 S正方形ABCD,
∴S阴影部分=S正方形=××=1.
故选:A.
5.解:A错误,如等腰梯形即为一组对边平行,另一组对边相等的四边形,却不是平行四边形;
B错误,由矩形的性质可知矩形的对角线互相平分且相等;
C正确,由菱形的性质可知菱形的对角线互相垂直且平分;
D错误,由正方形的性质及判定可知,对角线互相垂直,平分,且相等的四边形是正方形;
故选:C.
6.解:A、∵四边形ABCD是平行四边形,
又∵AB=BC,
∴四边形ABCD是菱形,故本选项不符合题意;
B、∵四边形ABCD是平行四边形,
又∵AC⊥BD,
∴四边形ABCD是菱形,故本选项不符合题意;
C、∵四边形ABCD是平行四边形,
又∵AC=BD,
∴四边形ABCD是矩形,不一定是正方形,故本选项符合题意;
D、∵四边形ABCD是平行四边形,
又∵∠ABC=90°,
∴四边形ABCD是矩形,故本选项不符合题意;
故选:C.
7.解:①AB=BC,∠A=90°;
根据有一个角是直角且有一组邻边相等的平行四边形是正方形,能判定 ABCD是正方形,故此选项正确;
②AC⊥BD,AC=BD;
由对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定 ABCD是正方形,故此选项正确;
③OA=OD,BC=CD;
由ABCD是平行四边形,可得AC与BD互相平分,而OA=OD,所以AC=BD,对角线相等的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,既是矩形又是菱形的四边形是正方形,能判定 ABCD是正方形,故此选项正确;
④∠BOC=90°,∠ABD=∠DCA;
由∠BOC=90°,根据对角线互相垂直的平行四边形是菱形,可得 ABCD是菱形;由ABCD是平行四边形,可得AC与BD互相平分,AB∥CD,则∠ABD=∠CDB=∠DCA,所以OC=OD,又对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定 ABCD是正方形,故此选项正确.
故选:D.
8.解:作BM⊥x轴于M.
∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°,
∴∠DAO+∠BAM=90°,∠BAM+∠ABM=90°,
∴∠DAO=∠ABM,
∵∠AOD=∠AMB=90°,
∴在△DAO和△ABM中,
∴△DAO≌△ABM(AAS),
∴OA=BM,AM=OD,
∵A(﹣3,0),B(2,b),
∴OA=3,OM=2,
∴OD=AM=5,
∴AD==,
∴正方形ABCD的面积=34,
故选:C.
9.解:如果OA=OD,则四边形AEDF是矩形,没有说∠A=90°,不符合题意,故①错误;
∵AD是△ABC的角平分线,
∴∠EAD=∠FAD,
在△AED和△AFD中,,
∴△AED≌△AFD(AAS),
∴AE=AF,DE=DF,
∴AE+DF=AF+DE,故④正确;
∵在△AEO和△AFO中,,
∴△AEO≌△AFO(SAS),
∴EO=FO,
又∵AE=AF,
∴AO是EF的中垂线,
∴AD⊥EF,故②正确;
∵当∠A=90°时,四边形AEDF的四个角都是直角,
∴四边形AEDF是矩形,
又∵DE=DF,
∴四边形AEDF是正方形,故③正确.
综上可得:正确的是:②③④,
故选:D.
10.解:∵四边形ABCD是正方形,
∴AD=AB,∠DAB=90°.
∴∠DAP+∠BAP=90°.
又∠EAP+∠BAP=90°,
∴∠EAP=∠DAP.
又AE=AP,
∴△APD≌△AEB(SAS).
所以①正确;
∵AE=AP,∠EAP=90°,
∴∠APE=∠AEP=45°,
∴∠APD=180°﹣45°=135°.
∵△APD≌△AEB,
∴∠AEB=∠APD=135°,
∴∠BEP=135°﹣45°=90°,
即EB⊥ED,②正确;
在等腰Rt△AEP中,利用勾股定理可得EP==,
在Rt△BEP中,利用勾股定理可得BE=.
∵B点到直线AE的距离小于BE,所以点B到直线AE的距离为是错误的,
所以③错误;
在△AEB中,∠AEB=135°,AE=1,BE=,
如图所示,过点A作AH⊥BE交BE延长线于H点.
在等腰Rt△AHE中,可得AH=HE=AE=.
所以BH=+.
在Rt△AHB中利用勾股定理可得AB2=BH2+AH2,
即AB2=(+)2+()2=8+,
所以S正方形ABCD=8+.
所以④正确.
所以只有①和②、④的结论正确.
故选:C.
11.解:∵平行四边形ABCD对角线互相垂直,
∴四边形ABCD是菱形,
当对角线AC=BD或∠BAD=90°时,
平行四边形ABCD是矩形,
∴四边形ABCD是正方形;
故答案为:对角线相等或∠BAD=90°,
12.解:如图,连接AO,
∵四边形ABCD是正方形,
∴AB=AD=,BD=AB=2,∠DAB=90°,
又∵OM⊥AD,ON⊥AB,
∴四边形AMON是矩形,
∴AO=MN,
∵当AO⊥BD时,AO有最小值,
∴当AO⊥BD时,MN有最小值,
此时AB=AD,∠BAD=90°,AO⊥BD,
∴AO=BD=1,
∴MN的最小值为1,
故答案为:1.
13.解:∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∴∠BAD+∠DAE=90°,
∵BF⊥a于点F,DE⊥a于点E,
∴∠AFB=∠AFD=90°,
∵∠BAF+∠ABF=90°,
∴∠ABF=∠DAE,
在△ABF和△DAE中

∴△ABF≌△DAE,
∴AF=DE=8,BF=AE,
在Rt△ABF中,BF==6,
∴AE=6,
∴EF=AE+AF=6+8=14.
故答案为14.
14.解:①:∵正方形ABCD中,AB=AD,∠B=∠ADC=∠C=90°
∴MN2=MC2+NC2
当MN=MC时,
MN2=2MC2,
∴MC2=NC2,
∴MC=NC,
∴BM=DN,
∴△ABM≌△ADN(SAS)
∴∠BAM=∠DAN,
∵∠MAN=45°,
∴∠BAM=22.5°,故①正确;
②:如图,将△ABM绕点A顺时针旋转90°得△ADE,
则∠EAN=∠EAM﹣∠MAN=90°﹣45°=45°,
则在△EAN和△MAN中,

∴△EAN≌△MAN(SAS)
∴∠AMN=∠AED,
∴∠AED+∠EAM+∠ENM+∠AMN=360°,
∴2∠AMN+90°+(180°﹣∠MNC)=360°,
∴2∠AMN﹣∠MNC=90°,
故②正确;
③:∵△EAN≌△MAN,
∴MN=EN=DE+DN=BM+DN,
∴△MNC的周长为:
MC+NC+MN=(MC+BM)+(NC+DN)=DC+BC,
∵DC和BC均为正方形ABCD的边长,故△MNC的周长不变.故③正确;
④如图,将△ADN绕点A逆时针旋转90°得△ABF,
∴∠MAF=90°﹣∠MAN=45°,
∴∠MAN=∠MAF,
在△MAN和△MAF中,

∴△MAN≌△MAF(SAS),
∴∠AMN=∠AMB,
故④错误.
综上①②③正确.
故答案为:①②③.
15.证明:∵CE⊥DG于点E,AF∥CE,
∴∠DFA=∠CED=90°,
又∵∠CDE+∠FDA=90°,
∠DAF+∠FDA=90°,
∴∠CDE=∠DAF,
在△CDE和△DAF中,

∴△CDE≌△DAF(AAS),
∴DE=AF,
又∵EF=DF﹣DE,
∴EF=DF﹣AF.
16.解:∵四边形ABCD是正方形,
∴∠FDC=∠DCF=45°,
∵∠E=90°,ED=EC,
∴∠EDC=∠ECD=45°,
∴∠FCE=∠FDE=∠E=90°,
∴四边形DFCE是矩形,
∵DE=CE,
∴四边形DFCE是正方形.
17.解:(1)四边形OCED是菱形,理由如下:
∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
又∵在矩形ABCD中,OC=OD,
∴四边形OCED是菱形;
(2)当AB=AD时,四边形OCED是正方形,
理由如下:
∵AB=AD,
∴矩形ABCD是正方形,
∴AC⊥BD,
∴菱形OCED是正方形.
18.解:(1)∵△ABE、△BCF为等边三角形,
∴AB=BE=AE,BC=CF=FB,∠ABE=∠CBF=60°,
∴∠ABE﹣∠ABF=∠FBC﹣∠ABF,即∠CBA=∠FBE,
在△ABC和△EBF中,

∴△ABC≌△EBF(SAS),
∴EF=AC,
又∵△ADC为等边三角形,
∴CD=AD=AC,
∴EF=AD=DC,
同理可得△ABC≌△DFC,
∴AB=AE=DF,
∴四边形AEFD是平行四边形;
∴∠FEA=∠ADF,
∴∠FEA+∠AEB=∠ADF+∠ADC,即∠FEB=∠CDF,
在△FEB和△CDF中,

∴△EBF≌△DFC(SAS),
(2)∵△EBF≌△DFC,
∴EB=DF,EF=DC.
∵△ACD和△ABE为等边三角形,
∴AD=DC,AE=BE,
∴AD=EF,AE=DF
∴四边形AEFD是平行四边形;
(3)①若AB=AC,则平行四边形AEFD是菱形;
此时AE=AB=AC=AD,即△ABC是等腰三角形;
故△ABC满足AB=AC时,四边形AEFD是菱形;
②若∠BAC=150°,则平行四边形AEFD是矩形;
由(1)知四边形AEFD是平行四边形,则∠EAD=90°时,可得平行四边形AEFD是矩形,
∴∠BAC=360°﹣60°﹣60°﹣90°=150°,
即△ABC满足∠BAC=150°时,四边形AEFD是矩形;
③综合①②的结论知:当△ABC是顶角∠BAC是150°的等腰三角形时,四边形AEFD是正方形.
故答案是:①AB=AC;
②∠BAC=150°;
③AB=AC,∠BAC=150°.
19.(1)证明:∵DE∥AC交AB于点E,DF∥AB交AC于点F,
∴四边形AEDF是平行四边形,∠EAD=∠ADF,
∵AD是△ABC的角平分线,
∴∠EAD=∠FAD,
∴∠ADF=∠FAD,
∴FA=FD,
∴四边形AEDF是菱形(有一组邻边相等的平行四边形是菱形);
(2)解:当△ABC是直角三角形,∠BAC=90°,时,四边形AEDF是正方形,
理由:∵△ABC是直角三角形,∠BAC=90°,
由(1)知四边形AEDF是菱形,
∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).
20.(1)证明:∵四边形ABCD是正方形,
∴BC=DC,∠ACB=∠ACD,
在△PBC和△PDC中,

∴△PBC≌△PDC(SAS),
∴PB=PD,
∵PE=PB,
∴PE=PD;
(2)解:BC2+EC2=2PE2,证明如下:
连接DE,如图所示:
∵四边形ABCD是正方形,
∴∠BCD=90°,BC=CD,
由(1)得:△PBC≌△PDC,
∴∠PBC=∠PDC,
∵PE=PB,
∴∠PBC=∠PEB,
∴∠PDC=∠PEB,
∵∠PEB+∠PEC=180°,
∴∠PDC+∠PEC=180°,
∴∠EPD=360°﹣(∠PDC+∠PEC)﹣∠BCD=360°﹣180°﹣90°=90°,
又∵PE=PD,
∴△PDE是等腰直角三角形,
∴DE2=PE2+PD2=2PE2,
在Rt△CDE中,由勾股定理得:CD2+EC2=DE2,
∴BC2+EC2=2PE2.
21.(1)证明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵MN∥AB,即CE∥AD,
∴四边形ADEC是平行四边形,
∴CE=AD;
(2)解:四边形BECD是菱形,
理由是:∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=BD(直角三角形斜边上的中线等于斜边的一半),
∴四边形BECD是菱形;
(3)当∠A=45°时,四边形BECD是正方形,理由是:
解:∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D为BA中点,
∴CD⊥AB,
∴∠CDB=90°,
∵四边形BECD是菱形,
∴菱形BECD是正方形,
即当∠A=45°时,四边形BECD是正方形.
22.①证明:过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:
∵正方形ABCD
∴∠BCD=90°,∠ECN=45°
∴∠EMC=∠ENC=∠BCD=90°
且NE=NC,
∴四边形EMCN为正方形
∵四边形DEFG是矩形,
∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°
∴∠DEN=∠MEF,
又∠DNE=∠FME=90°,
在△DEN和△FEM中,,
∴△DEN≌△FEM(ASA),
∴ED=EF,
∴矩形DEFG为正方形,
②解:CE+CG的值为定值,理由如下:
∵矩形DEFG为正方形,
∴DE=DG,∠EDC+∠CDG=90°
∵四边形ABCD是正方形,
∵AD=DC,∠ADE+∠EDC=90°
∴∠ADE=∠CDG,
在△ADE和△CDG中,,
∴△ADE≌△CDG(SAS),
∴AE=CG
∴AC=AE+CE=AB=×2=4,
∴CE+CG=4 是定值.
23.解:(1)∵四边形ABCD是正方形,
∴∠BAO=∠AOC=90°,
∵E(0,2),H(﹣2,6),
∴AH=OE=2,
∵四边形EFGH是菱形,
∴EH=EF,
在Rt△AHE和Rt△OEF中,

∴Rt△AHE≌Rt△OEF,
∴∠AEH=∠EFO,
∵∠EFO+∠FEO=90°,
∴∠AEH+∠FEO=90°,
∴∠HEF=90°,∵四边形EFGH是菱形,
∴四边形EFGH是正方形.
(2)连接EG交FH于K.
∵HE=EF,
∴AH2+AE2=EO2+OF2,
∴AH2+16=4+25,
∴AH=,
∴H(﹣,6),
∵KH=KF,
∴K(﹣,3),
∵GK=KE,
∴G(﹣5﹣,4).