2021-2022学年新教材高中数学第三章函数概念与性质2函数的基本性质教案(2份打包)新人教A版必修第一册

文档属性

名称 2021-2022学年新教材高中数学第三章函数概念与性质2函数的基本性质教案(2份打包)新人教A版必修第一册
格式 zip
文件大小 260.5KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-01-25 19:53:51

文档简介

函数的最大(小)值(第二课时)
教学目的:(1)理解函数的最大(小)值及其几何意义;
(2)学会运用函数图象理解和研究函数的性质;
教学重点:函数的最大(小)值及其几何意义.
教学难点:利用函数的单调性求函数的最大(小)值.
教学过程:
一、引入课题
画出下列函数的图象,并根据图象解答下列问题:
说出y=f(x)的单调区间,以及在各单调区间上的单调性;
指出图象的最高点或最低点,并说明它能体现函数的什么特征?
(1) (2)
(3) (4)
二、新课教学
(一)函数最大(小)值定义
1.最大值
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有f(x)≤M;
(2)存在x0∈I,使得f(x0) = M
那么,称M是函数y=f(x)的最大值(Maximum Value).
思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动)
注意:
函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M;
函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).
2.利用函数单调性的判断函数的最大(小)值的方法
利用二次函数的性质(配方法)求函数的最大(小)值
利用图象求函数的最大(小)值
利用函数单调性的判断函数的最大(小)值
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
(二)典型例题
例1. 旅 馆 定 价
一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:
房价(元) 住房率(%)
160 55
140 65
120 75
100 85
欲使每天的的营业额最高,应如何定价?
解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.
设为旅馆一天的客房总收入,为与房价160相比降低的房价,因此当房价为元时,住房率为,于是得
=150··.
由于≤1,可知0≤≤90.
因此问题转化为:当0≤≤90时,求的最大值的问题.
将的两边同除以一个常数0.75,得1=-2+50+17600.
由于二次函数1在=25时取得最大值,可知也在=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).
所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)
例2.求函数在区间[2,6]上的最大值和最小值.
解:在与内都为减函数,题中要求
在[2,6]内的最大值与最小值,
则当取得最大值,
当取得最小值.
例3:如图,把截面半径为
25cm的圆形木头锯成矩形木料,
如果矩形一边长为x,面积为y
试将y表示成x的函数,并画出
函数的大致图象,并判断怎样锯
才能使得截面面积最大?
解:矩形的一边长为x,则另一边的长度为则,则矩形的面积为,即
一、归纳小结,强化思想
函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:
取 值 → 作 差 → 变 形 → 定 号 → 下结论
二、作业布置
提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?
25
A
B
C
D
PAGE
3函数的奇偶性
奇偶性 定 义 图象特点
偶函数 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数 关于y轴对称
奇函数 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数 关于原点对称
?易误提醒 
1.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.
2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0)、f(-x0)=f(x0).
3.分段函数奇偶性判定时,利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的.
?必记结论 
1.函数奇偶性的几个重要结论:
(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).
(3)既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈D,其中定义域D是关于原点对称的非空数集.
(4)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
2.有关对称性的结论:
(1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称.
若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称.
(2)若f(x)=f(2a-x),则函数f(x)关于x=a对称.
若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称.
[自测练习]
1.函数f(x)=lg(x+1)+lg(x-1)的奇偶性是(  )
A.奇函数 B.偶函数
C.非奇非偶函数 D.既奇又偶函数
解析:由知x>1,定义域不关于原点对称,故f(x)为非奇非偶函数.
答案:C
2.(2015·石家庄一模)设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-)=(  )
A.- B.
C.2 D.-2
解析:因为函数f(x)是偶函数,所以f(-)=f()=log2=,故选B.
答案:B
3.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.
解析:∵f(-x)=f(x)对于x∈R恒成立,∴|-x+a|=|x+a|对于x∈R恒成立,两边平方整理得ax=0对于x∈R恒成立,故a=0.
答案:0
[自测练习]
4.函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f(f(5))=________.
解:f(x+2)=,∴f(x+4)==f(x),
∴f(5)=f(1)=-5,∴f(f(5))=f(-5)=f(3)==-.
答案:-
考点一 函数奇偶性的判断|
判断下列函数的奇偶性.
(1)f(x)=+;
(2)f(x)=+;
(3)f(x)=3x-3-x;
(4)f(x)=;
(5)f(x)=
解:(1)由得x=±1,
∴f(x)的定义域为{-1,1}.
又f(1)+f(-1)=0,f(1)-f(-1)=0,
即f(x)=±f(-x).
∴f(x)既是奇函数又是偶函数.
(2)∵函数f(x)=+的定义域为,不关于坐标原点对称,
∴函数f(x)既不是奇函数,也不是偶函数.
(3)∵f(x)的定义域为R,
∴f(-x)=3-x-3x=-(3x-3-x)=-f(x),
所以f(x)为奇函数.
(4)∵由得-2≤x≤2且x≠0.
∴f(x)的定义域为[-2,0)∪(0,2],
∴f(x)===,
∴f(-x)=-f(x),∴f(x)是奇函数.
(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x>0时,f(x)=x2+x,
则当x<0时,-x>0,
故f(-x)=x2-x=f(x);
当x<0时,f(x)=x2-x,则当x>0时,-x<0,
故f(-x)=x2+x=f(x),故原函数是偶函数.
函数奇偶性的判定的三种常用方法
1.定义法:
2.图象法:
3.性质法:
(1)“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;
(2)“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;
(3)“奇·偶”是奇,“奇÷偶”是奇.
  
探究一 利用单调性、奇偶性求解不等式
2.(2015·高考全国卷Ⅱ)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是(  )
A.
B.∪(1,+∞)
C.
D.∪
解析:函数f(x)=ln(1+|x|)-,∴f(-x)=f(x),故f(x)为偶函数,又当x∈(0,+∞)时,f(x)=ln(1+x)-,f(x)是单调递增的,故f(x)>f(2x-1) f(|x|)>f(|2x-1|),∴|x|>|2x-1|,解得答案:A
  
  2.构造法在函数奇偶性中的应用
【典例】 设函数f(x)=的最大值为M,最小值为m,则M+m=________.
[思路点拨] 直接求解函数的最大值和最小值很复杂不可取,所以可考虑对函数整理化简,构造奇函数,根据奇函数的最大值与最小值之和为零求解.
[解析] 易知f(x)=1+.
设g(x)=f(x)-1=,
则g(x)是奇函数.
∵f(x)的最大值为M,最小值为m,
∴g(x)的最大值为M-1,最小值为m-1,
∴M-1+m-1=0,∴M+m=2.
[答案] 2
[方法点评] 在函数没有指明奇偶性或所给函数根本不具备奇偶性的情况下,通过观察函数的结构,发现其局部通过变式可构造出奇偶函数,这样就可以根据奇偶函数特有的性质解决问题.
[跟踪练习] 已知f(x)=x5+ax3+bx-8,且f(-2)=10,则f(2)等于(  )
A.-26          B.-18
C.-10 D.10
解析:由f(x)=x5+ax3+bx-8知f(x)+8=x5+ax3+bx,
令F(x)=f(x)+8可知F(x)为奇函数,
∴F(-x)+F(x)=0.
∴F(-2)+F(2)=0,故f(-2)+8+f(2)+8=0.
∴f(2)=-26.
答案:A
A组 考点能力演练
1.(2015·陕西一检)若f(x)是定义在R上的函数,则“f(0)=0”是“函数f(x)为奇函数”的(  )
A.必要不充分条件
B.充要条件
C.充分不必要条件
D.既不充分也不必要条件
解析:f(x)在R上为奇函数 f(0)=0;f(0)=0 f(x)在R上为奇函数,如f(x)=x2,故选A.
答案:A
2.(2015·唐山一模)已知函数f(x)=-x+log2+1,则f+f的值为(  )
             
A.2 B.-2
C.0 D.2log2
解析:由题意知,f(x)-1=-x+log2,f(-x)-1=x+log2=x-log2=-(f(x)-1),所以f(x)-1为奇函数,则f-1+f-1=0,所以f+f=2.
答案:A
3.在R上的奇函数f(x)满足f(x+3)=f(x),当0A.-2 B.2
C.- D.
解析:由f(x+3)=f(x)得函数的周期为3,所以f(2 015)=f(672×3-1)=f(-1)=-f(1)=-2,故选A.
答案:A
4.设奇函数f(x)在(0,+∞)上是增函数,且f(1)=0,则不等式x[f(x)-f(-x)]<0的解集为(  )
A.{x|-11}
B.{x|x<-1,或0C.{x|x<-1,或x>1}
D.{x|-1解析:∵奇函数f(x)在(0,+∞)上是增函数,f(-x)=-f(x),x[f(x)-f(-x)]<0,∴xf(x)<0,又f(1)=0,
∴f(-1)=0,
从而有函数f(x)的图象如图所示:
则有不等式x[f(x)-f(-x)]<0的解集为
{x|-1答案:D
5.已知f(x)是定义在R上的偶函数,f(2)=1,且对任意的x∈R,都有f(x+3)=f(x),则f(2 017)=________.
解析:由f(x+3)=f(x)得函数f(x)的周期T=3,则f(2 017)=f(1)=f(-2),又f(x)是定义在R上的偶函数,所以f(2 017)=f(2)=1.
答案:1
6.函数f(x)=为奇函数,则a=______.
解析:由题意知,g(x)=(x+1)(x+a)为偶函数,∴a=-1.
答案:-1
7.已知函数f(x)=是奇函数.
(1)求实数m的值;
(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围.
解:(1)设x<0,则-x>0,
所以f(-x)=-(-x)2+2(-x)=-x2-2x.
又f(x)为奇函数,所以f(-x)=-f(x),
于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.
(2)要使f(x)在[-1,a-2]上单调递增,
结合f(x)的图象知
所以18.函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f(1)=0,求不等式f<0的解集.
解:∵y=f(x)是奇函数,∴f(-1)=-f(1)=0.
又∵y=f(x)在(0,+∞)上是增函数,
∴y=f(x)在(-∞,0)上是增函数,
若f<0=f(1),∴
即0f<0=f(-1),∴
∴x<-1,解得x∈ .
∴原不等式的解集是
.
B组 高考题型专练
1.(2014·高考新课标全国卷Ⅰ)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是(  )
A.f(x)g(x)是偶函数
B.|f(x)|g(x)是奇函数
C.f(x)|g(x)|是奇函数
D.|f(x)g(x)|是奇函数
解析:由题意可知f(-x)=-f(x),g(-x)=g(x),对于选项A,f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|g(x)是偶函数,故B项错误;对于选项C,f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.
答案:C
2..(2015·高考广东卷)下列函数中,既不是奇函数,也不是偶函数的是(  )
A.y= B.y=x+
C.y=2x+ D.y=x+ex
解析:选项A中的函数是偶函数;选项B中的函数是奇函数;选项C为偶函数,只有选项D中的函数既不是奇函数也不是偶函数.
答案:D
3.(2015·高考天津卷)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数.记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为(  )
A.aC.c解析:由f(x)=2|x-m|-1是偶函数得m=0,则f(x)=2|x|-1,当x∈[0,+∞)时,f(x) =2x-1递增,又a=f(log0.53)=f(|log0.53|)=f(log23),c=f(0),且0答案:C
4.(2015·高考湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是(  )
A.奇函数,且在(0,1)上是增函数
B.奇函数,且在(0,1)上是减函数
C.偶函数,且在(0,1)上是增函数
D.偶函数,且在(0,1)上是减函数
解析:由题意可得,函数f(x)的定义域为(-1,1),且f(x)=ln=ln,易知y=-1在(0,1)上为增函数,故f(x)在(0,1)上为增函数,又f(-x)=ln(1-x)-ln(1+x)=-f(x),故f(x)为奇函数,选A.
答案:A
PAGE
8