8.3《实际问题与二元一次方程组》随堂练习
2021-2022学年人教版七年级数学下册
一、单选题
1.某校学生去看电影,如果每辆汽车坐60人,则空出1辆汽车,如果每辆汽车坐45人,则有15人没有座位,那么学生人数和汽车辆数分别是多少?( )
A.230人,6辆 B.240人,5辆 C.240人,8辆 D.250人,7辆
2.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为( )
A. B. C. D.
3.甲、乙两个工人按计划一个月应生产680个零件,结果甲超额完成计划的20%,乙超额完成计划的15%,两人一共多生产118个零件,则原计划甲、乙各生产零件数为( )
A.320,360 B.360,320 C.300,380 D.380,380
4.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )
A. B. C. D.
5.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和△,则两个数●与△的值为( )
A. B. C. D.
6.出境旅游者问某童:“你有几个兄弟、几个姐妹 ”答:“有几个兄弟就有几个姐妹.”再问其妹有几个兄弟、几个姐妹,她答:“我的兄弟是姐妹的2倍.”试问:他们兄弟姐妹的人数各是( ).
A.兄弟4人,姐妹3人 B.兄弟3人,姐妹4人
C.兄弟2人,姐妹5人 D.兄弟5人,姐妹2人
7.一个两位数,个位上的数字与十位上的数字之和为7,如果这个两位数加上45则恰好成为个位数字与十位数字对调后组成的新两位数,则原来的两位数是( )
A.61 B.16 C.52 D.25
8.一辆汽车在公路上匀速行驶,司机在路边看到一个里程碑上的一个两位数,行驶1小时后,他看到的里程碑上的数恰好是第一个里程碑上的数颠倒顺序后的两位数;再过1小时,他看到的里程碑上的数,又恰好是第一次看到的两位数中间添上一个零得到的三位数.那么他第一次看到的两位数是( )
A.14 B.15 C.16 D.17
二、填空题
9.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了__________道题.
10.A、B两地相距80千米,一艘船从A地出发顺水航行4小时到达B地,而它从B地出发逆水航行5小时才能到达A地.已知船顺水航行、逆水航行的速度分别为船在静水中的速度与水流速度的和与差,则船在静水中的速度是________,水流速度是________.
11.在一次有12个队参加的足球循环赛中(每两队之间比赛一场),规定胜一场记3分,平一场记1分,负场记0分.某队在这次循环赛中所胜场数比所负场数多2,结果共积19分,则该队在这次循环赛中战平了________场.
12.某商场今年五月份的销售额是200万元,比去年五月份销售额的2倍少40万元,那么去年五月份的销售额是________万元.
13.端午节时,王老师用72元钱买了荷包和五彩绳共20个.其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,列出的方程组是________.
三、解答题
14.根据题意列方程组:
(1)某班共有学生45人,其中男生比女生的2倍少9人,该班的男生、女生各有多少人?
(2)将一摞笔记本分给若干同学.每个同学5本,则剩下8本;每个同学8本,又差了7本.共有多少本笔记本、多少个同学?
15.《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?
16.《算法统宗》中记载了一个问题,大意是:100个和尚分100个馒头,大和尚1人分3个馒头,小和尚3人分1个馒头.问大、小和尚各有多少人?
17.某商店准备用两种价格分别为36元/kg和20元/kg的糖果混合成杂拌糖果出售,混合后糖果的价格是28元/kg.现在要配制这种杂拌糖果100kg,需要两种糖果各多少千克?
18.列方程组解古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.甲、乙持钱各几何?”
题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50.如果乙得到甲所有钱的,那么乙也共有钱50.甲、乙两人各带了多少钱?
试卷第1页,共3页
试卷第1页,共3页
参考答案
1.B
设学生人数为x人,汽车辆数为y辆,
由题意得:,
解得,
则学生人数为240人,汽车辆数为5辆,
故选:B.
2.A
解:由题意可得,
,
故选:A.
3.A
根据题意设原计划甲生产x个零件,乙生产y个零件,根据甲、乙两个工人,按计划本月应共生产680个零件,实际甲超额20%、乙超额15%,因此两人一共多生产118个零件列出方程组,求出方程组的解即可得到结果.
4.A
解:设一个小长方形的长为xcm,宽为ycm,
则可列方程组组:,
解得:,
则一个小正方形的面积=45cm×15cm=675cm2.
故选:A.
5.D
∵方程组的解为,
∴将x=5代入2x﹣y=12,得:y=﹣2,
∴△=﹣2.
将x=5,y=﹣2代入2x+y得:2x+y=2×5+(﹣2)=8,
∴●=8,
∴●=8,△=﹣2.
故选:D.
6.A
解:该男童有x个兄弟,y个姐妹,依题意得:
,
解得:.
那么加上自己,他们兄弟姐妹中男孩和女孩的人数应该各为4人和3人.
故应选A.
7.B
设这个两位数的十位数字为x,则个位数字为7 x,
由题意列方程得,10x+7 x+45=10(7 x)+x,
解得x=1,
则7 x=7 1=6,故这个两位数为16.
故选B.
8.C
设他第一次看到的两位数的个位数字为x,十位数字为y,汽车的行驶速度为v,
根据题意得
解得.
因为x,y为1~9内的自然数,
所以,,所以他第一次看到的两位数为16.
故选C.
9.19
10.18千米/时 2千米/时
11.1
12.120
13.
14.
(1)设该班有男生x名,女生y名,
则可列方程组
(2)设有x个同学,y个笔记本,
则可列方程组
15
解:可设有x人,物品价值y元,
根据题意,得,
消去y得,
移项得,
解得,
把①得
∴
答有7人,该物品价值53元
16.
解:设大和尚有人,小和尚有人,
由题意得:,
解得,
答:大和尚有25人,小和尚有75人.
17.
解:设36元的糖果有千克,20元的糖果有千克,
由题意,得
,
解得:,.
答:要36元的糖果有50千克,20元的糖果50千克.
18.
解:设甲带钱x,乙带钱y,根据题意,
得,
①×2得:③,
③-②得:,
把代入③得,
∴.
答案第1页,共2页
答案第1页,共2页