九年级数学上册_第三章《一元二次方程》回顾与思考小结课件

文档属性

名称 九年级数学上册_第三章《一元二次方程》回顾与思考小结课件
格式 zip
文件大小 556.9KB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2012-11-19 21:36:34

图片预览

文档简介

课件23张PPT。九年级数学(上)第三章 一元二次方程回顾与思考:一元二次方程小结你掌握了些什么1.一元二次方程在生活中有哪些应用?请举例说明.4.配方法的一般过程是怎样的?2.在解决实际问题的过程中,怎样判断所求得的结果是否合理?请举例说明.3.举例说明解一元二次方程有哪些方法?5.利用方程解决实际问题的关键是什么?一元二次方程的概念 方程都是只含有      的     ,并且都可以化为                  的形式,这样的方程叫做一元二次方程.把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2 , bx , c分别称为二次项、一次项和常数项,a, b分别称为二次项系数和一次项系数.一个未知数x整式方程ax2+bx+c=0(a,b,c为常数, a≠0)配方法用配方法解一元二次方程的步骤:1.化1:把二次项系数化为1(方程两边都除以二次项系数);
2.移项:把常数项移到方程的右边;
3.配方:方程两边都加上一次项系数绝对值一半的平方;
4.变形:方程左边分解因式,右边合并同类项;
5.开方:根据平方根意义,方程两边开平方;
6.求解:解一元一次方程;
7.定解:写出原方程的解.我们通过配成完全平方式的方法,得到了一元二次方程的根,这种解一元二次方程的方法称为配方法(solving by completing the square)公式法一般地,对于一元二次方程 ax2+bx+c=0(a≠0) 上面这个式子称为一元二次方程的求根公式.
用求根公式解一元二次方程的方法称为公式法(solving by formular).老师提示:
用公式法解一元二次方程的前提是:
1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0).
2.b2-4ac≥0.公式法是这样生产的你能用配方法解方程 ax2+bx+c=0(a≠0) 吗?1.化1:把二次项系数化为1;3.配方:方程两边都加上一次项系数绝对值一半的平方;4.变形:方程左边分解因式,右边合并同类项;5.开方:根据平方根意义,方程两边开平方;6.求解:解一元一次方程;7.定解:写出原方程的解.2.移项:把常数项移到方程的右边;知识是怎样发现的我们知道:代数式b2-4ac对于方程的根起着关键的作用.分解因式法当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法你为分解因式法.老师提示:
1.用分解因式法的条件是:方程左边易于分解,而右边等于零;
2. 关键是熟练掌握因式分解的知识;
3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”解应用题列方程解应用题的一般步骤是:
1.审:审清题意:已知什么,求什么?已知,未知之间有什么关系?
2.设:设未知数,语句要完整,有单位(同一)的要注明单位;
3.列:列代数式,列方程;
4.解:解所列的方程;
5.验:是否是所列方程的根;是否符合题意;
6.答:答案也必需是完整的语句,注明单位且要贴近生活.
列方程解应用题的关键是:
找出相等关系.知识的升华复习题.共16题;
祝你成功!数字与方程1. 两个数的差等于4,积等于45,求这两个数.数字与方程2. 两个连续奇数的积等于20022-1,求这两个数.数字与方程4.有一个两位数,它的十位数字与个位数字的和是5.把这个两位数的十位数字与个位数字互换后得到另一个两位数,两个两位数的积为763.求原来的两位数.几何与方程5 .将一块正方形的铁皮四角剪去一个边长为4cm的小正方形,做成一个无盖的盒子.已知盒子的容积是400cm3,求原铁皮的边长. 几何与方程6 . 一直角三角形的斜边长7cm,一条直角边比另一条直角边长1cm,求两条直角边长度. 几何与方程7 .一块长方形草地的长和宽分别为20cm和15cm,在它的四周外围环绕着宽度相等的小路.已知小路的面积为246cm2,求小路的宽度. 几何与方程9. 将一条长为56cm的铁丝剪成两段,并把每一段围成一个正方形.
(1).要使这两个正方形的面积之和等于100cm2,该怎样剪?
(2).要使这两个正方形的面积之和等于196cm2,该怎样剪?
(3).这两个正方形的面积之和可能等于200m2吗?
10. 某汽车在公路上行驶,它的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶 200m需要多长时间?运动与方程11.甲公司前年缴税40万元,今年缴税48.4万元.该公司缴税的年平均增长率为多少?增长率与方程12.某公司计划经过两年把某种商品的生产成本降低19%,那么平均每年需降低百分之几?增长率与方程13.一次会议上,每两个参加会议的人都互相握了一次手,有人统计一共握了66次手.这次会议到会的人数是多少?美满生活与方程回味无穷列方程解应用题的一般步骤是:
1.审:审清题意:已知什么,求什么?已知,未知之间有什么关系?
2.设:设未知数,语句要完整,有单位(同一)的要注明单位;
3.列:列代数式,列方程;
4.解:解所列的方程;
5.验:是否是所列方程的根;是否符合题意;
6.答:答案也必需是完整的语句,注明单位且要贴近生活.
列方程解应用题的关键是:
找出相等关系.
关于两次平均增长(降低)率问题的一般关系:
a(1±x)2=A(其中a表示基数,x表表示增长(或降低)率,A表示新数)结束寄语一元二次方程也是刻画现实世界的有效数学模型.
用列方程的方法去解释或解答一些生活中的现象或问题是一种重要的数学方程方法——即方程的思想.