2021-2022学年北师大版八年级下册数学1.3线段的垂直平分线同步练习题 (word版含答案)

文档属性

名称 2021-2022学年北师大版八年级下册数学1.3线段的垂直平分线同步练习题 (word版含答案)
格式 docx
文件大小 103.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2022-01-27 11:18:52

图片预览

文档简介

1.3线段的垂直平分线
一.选择题
1.如图,在△ABC中,DE是AC的垂直平分线,AC=8cm,且△ABD的周长为16cm,则△ABC的周长为(  )
A.24 cm B.21 cm C.18 cm D.16 cm
2.如图,在△ABC中,∠C=90°,点E是AC上的点,且∠1=∠2,DE垂直平分AB,垂足是D.如果EC=4cm,则AE等于(  )
A.10cm B.8cm C.6cm D.5cm
3.如图,若记北京为A地,莫斯科为B地,雅典为C地,若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在(  )
A.三边垂直平分线的交点 B.三边中线的交点
C.三条角平分线的交点 D.三边上高的交点
4.如图,在△ABC中,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.已知△CDE的面积比△CDB的面积小5,则△ADE的面积为(  )
A.5 B.4 C.3 D.2
5.如图,直线l是线段AB的垂直平分线,点C在直线l外,且与A点在直线l的同一侧,点P是直线l上的任意点,连接AP,BC,CP,则BC与AP+PC的大小关系是(  )
A.> B.< C.≥ D.≤
6.如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠PAQ=40°,则∠BAC的度数是(  )
A.110° B.100° C.120° D.70°
7.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为(  )厘米.
A.16 B.18 C.26 D.28
8.已知:如图,∠AOB内一点P,P1,P2分别P是关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长是(  )
A.3cm B.4cm C.5cm D.6cm
9.下列命题中正确的命题有(  )
①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.
A.1个 B.2个 C.3个 D.4个
10.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?(  )
A.24° B.30° C.32° D.36°
二.填空题
11.如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD.若AC=7,BC=5,则△BDC的周长是   .
12.如图,△ABC中,DE垂直平分AC,与AC交于E,与BC交于D,∠C=15°,∠BAD=60°,则△ABC是   三角形.
13.如图,△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,若∠CAD=20°,则∠B=   .
14.如图,△ABC中,AC=7,BC=4,AB的垂直平分线DE交AB于点D,交边AC于点E,那么△BCE的周长为   .
15.如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=   .
三.解答题
16.如图,在ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.
(1)若∠CAE=∠B+30°,求∠B的大小;
(2)若∠CAE=∠B,AD=3,求AC的长.
17.如图,△ABC中,AB的垂直平分线分别交AB、BC于点M、D,AC的垂直平分线分别交AC、BC于点N、E,△ADE的周长是7.
(1)求BC的长度;
(2)若∠B+∠C=60°,则∠DAE度数是多少?请说明理由.
18.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.
19.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:
(1)FC=AD;
(2)AB=BC+AD.
参考答案
一.选择题
1.解:∵DE是AC的垂直平分线,
∴DA=DC,
∵△ABD的周长为16cm,
∴AB+BD+DA=AB+BD+DC=AB+BC=16cm,
∴△ABC的周长=AB+BC+AC=16+8=24(cm),
故选:A.
2.解:∵DE垂直平分AB,
∴AE=BE,
∴∠2=∠A,
∵∠1=∠2,
∴∠A=∠1=∠2,
∵∠C=90°,
∴∠A=∠1=∠2=30°,
∵∠1=∠2,ED⊥AB,∠C=90°,
∴CE=DE=4cm,
在Rt△ADE中,∠ADE=90°,∠A=30°,
∴AE=2DE=8cm,
故选:B.
3.解:∵中转仓到A、B两地的距离相等,
∴中转仓的位置应选在边AB的垂直平分线上,
同理,中转仓的位置应选在边AC、BC的垂直平分线上,
∵中转仓到A、B、C三地的距离相等,
∴中转仓的位置应选在三边垂直平分线的交点上,
故选:A.
4.解:由尺规作图可知,MN是线段AB的垂直平分线,
∴点D是AB的中点,
∴S△ADC=S△BDC,
∵S△BDC﹣S△CDE=5,
∴S△ADC﹣S△CDE=5,即△ADE的面积为5,
故选:A.
5.解:连接BP,
∵直线l是线段AB的垂直平分线,
∴AP=BP,
∴AP+PC=BP+PC,
当点P在BC与l的交点处时,AP+PC=CB,
当点P不在BC与l的交点处时,AP+PC=BP+PC>BC,
∴BC≤AP+PC,
故选:D.
6.解:∵PM、QN分别是线段AB、AC的垂直平分线,
∴PA=PB,QA=QC,
∴∠PAB=∠B,∠QAC=∠C,
∴∠PAB+∠QAC=∠B+∠C,
∵∠PAB+∠B+∠PAQ+∠QAC+∠C=180°,
∴∠PAB+∠QAC=70°,
∴∠BAC=∠PAB+∠QAC+∠PAQ=110°,
故选:A.
7.解:∵DE是△ABC中AC边的垂直平分线,
∴AE=CE,
∴△EBC的周长=BC+BE+CE=BC+BE+CE=BC+AB=10+8=18(厘米),
故选:B.
8.解:∵P与P1关于OA对称,
∴OA为线段PP1的垂直平分线,
∴MP=MP1,
同理,P与P2关于OB对称,
∴OB为线段PP2的垂直平分线,
∴NP=NP2,
∴P1P2=P1M+MN+NP2=MP+MN+NP=5cm,
则△PMN的周长为5cm.
故选:C.
9.解:①线段垂直平分线上任一点到线段两端距离相等,是线段垂直平分线的性质,符合逆定理,正确;
②错误;这是对线段垂直平分线的误解;
③有无数条,错误;
④点P在线段AB外且PA=PB,过P作直线MN⊥AB,则MN是线段AB的垂直平分线,错误;如图
⑤错误,这是对线段垂直平分线的误解;
故选:A.
10.解:∵直线M为∠ABC的角平分线,
∴∠ABP=∠CBP.
∵直线L为BC的中垂线,
∴BP=CP,
∴∠CBP=∠BCP,
∴∠ABP=∠CBP=∠BCP,
在△ABC中,3∠ABP+∠A+∠ACP=180°,
即3∠ABP+60°+24°=180°,
解得∠ABP=32°.
故选:C.
二.填空题
11.解:∵NM是AB的垂直平分线,
∴DA=DB,
∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=12,
故答案为:12.
12.解:∵DE垂直平分AC,
∴AD=CD,又∠C=15°,
∴∠C=∠DAC=15°,∠ADB=∠C+∠DAC=30°,
又∠BAD=60°,
∴∠BAD+∠ADB=90°,
∴∠B=90°;
即△ABC是直角三角形;
故答案为:直角.
13.解:∵AB的垂直平分线DE交BC于D,
∴AD=BD,
∴∠B=∠DAB,
∵∠C=90°,∠CAD=20°,
∴∠CDA=70°,
∴∠DAB=∠B=35°.
故答案为:35°.
14.解:∵DE是AB的垂直平分线,
∴EA=EB,
∴△BCE的周长=BC+BE+EC=BC+EA+EC=BC+AC=11,
故答案为:11.
15.解:连接CD,BD,
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,
∴AE=AF,
∵DG是BC的垂直平分线,
∴CD=BD,
在Rt△CDF和Rt△BDE中,

∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=6,AC=3,
∴BE=1.5.
故答案为:1.5.
三.解答题
16.解:(1)∵DE垂直平分AB,
∴EA=EB,
∴∠EAB=∠B,
∵∠C=90°,
∴∠CAB+∠B=90°,即∠B+30°+∠B+∠B=90°,
解得,∠B=20°;
(2)∵∠CAE=∠B,
∴3∠B=90°,
解得,∠B=30°,
∵DE垂直平分AB,AD=3,
∴AB=6,
在Rt△ABC中,∠C=90°,∠B=30°,
∴AC=AB=3.
17.解:(1)∵DM是线段AB的垂直平分线,
∴DA=DB,
同理,EA=EC,
∵△ADE的周长为7,
∴DA+DE+EA=7,
∴BC=DA+DE+EC=7;
(2)∠DAE度数是60°,
理由如下:∵DA=DB,EA=EC,
∴∠DAB=∠B,∠EAC=∠C,
∵∠B+∠C=60°,
∴∠ADE+∠AED=2∠B+2∠C=120°,
∴∠DAE=180°﹣120°=60°.
18.证明:∵∠BAC=90°,
∴∠ABC+∠C=90°,
∵AM⊥BC,
∴∠AMB=90°,
∴∠ABC+∠BAM=90°,
∴∠C=∠BAM,
∵AD平分∠MAC,
∴∠MAD=∠CAD,
∴∠BAM+∠MAD=∠C+∠CAD,
∵∠ADB=∠C+∠CAD,
∴∠BAD=∠ADB,
∴AB=BD,
∵BE平分∠ABC,
∴BF⊥AD,AF=FD,
即线段BF垂直平分线段AD.
19.证明:(1)∵AD∥BC(已知),
∴∠ADC=∠ECF(两直线平行,内错角相等),
∵E是CD的中点(已知),
∴DE=EC(中点的定义).
∵在△ADE与△FCE中,

∴△ADE≌△FCE(ASA),
∴FC=AD(全等三角形的性质).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF(全等三角形的对应边相等),
又∵BE⊥AF,
∴BE是线段AF的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF(已证),
∴AB=BC+AD(等量代换).