首页
初中语文
初中数学
初中英语
初中科学
初中历史与社会(人文地理)
初中物理
初中化学
初中历史
初中道德与法治(政治)
初中地理
初中生物
初中音乐
初中美术
初中体育
初中信息技术
资源详情
初中数学
人教版(2024)
七年级下册
第七章 平面直角坐标系
7.2 坐标方法的简单应用
7.2.1用坐标表示地理位置
2021—2022学年人教版数学七年级下册7.2.1用坐标表示地理位置靶向训练习题 (word版、含解析)
文档属性
名称
2021—2022学年人教版数学七年级下册7.2.1用坐标表示地理位置靶向训练习题 (word版、含解析)
格式
docx
文件大小
478.9KB
资源类型
教案
版本资源
人教版
科目
数学
更新时间
2022-01-28 20:19:13
点击下载
图片预览
1
2
3
4
5
文档简介
2021—2022人教版数学七年级下册
7.2.1用坐标表示地理位置靶向训练(含解析)
一、单选题
1.从车站向东走400米,再向北走500米到小红家;从车站向北走500米,向西走200米到小强家,则( )
A.小强家在小红家正东 B.小强家在小红家正西
C.小强家在小红家正南 D.小强家在小红家正北
2.A地在地球上的位置如图所示,则A地的位置是( )
A.东经130°,北纬50° B.东经130°,北纬60°
C.东经140°,北纬50° D.东经40°,北纬50°
3.下列数据中不能确定物体位置的是( )
A.某市政府位于北京路32号 B.小明住在某小区3号楼7号
C.太阳在我们的正上方 D.东经130°,北纬54°的城市
4.在平面直角坐标系中,点P( +1,-2)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在( )
A.原点上 B.x轴上
C.y轴上 D.x轴上或y轴上(除原点)
6.点 所在象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.根据下列表述,能确定具体位置的是( )
A.我校八年级(1)班班级座位3排4列
B.滨海县育才路
C.东经118°
D.县一中北偏东60°
8.如图,若在象棋盘上建立直角坐标系xOy,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“炮”位于点( )
A.(﹣2,﹣1) B.(0,0)
C.(1,﹣2) D.(﹣1,1)
9.如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是
A.炎陵位于株洲市区南偏东约35°的方向上
B.醴陵位于攸县的北偏东约16°的方向上
C.株洲县位于茶陵的南偏东约40°的方向上
D.株洲市区位于攸县的北偏西约21°的方向上
10.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )
A.(3,2) B.(3,1)
C.(2,2) D.(﹣2,2)
11.如图是某中学的平面示意图,其中宿舍楼暂未标注,已知宿舍楼在教学楼的北偏东约30o的方向,与教学楼实际距离约为200米,试借助刻度尺和量角器,测量图中四点位置,能比较准确地表示该宿舍楼位置的是( )
A.点A B.点B
C.点C D.点D
12.如图是中国象棋棋盘的一部分,若 位于点(1,﹣1),则 位于点( )
A.(3,﹣2) B.(2,﹣3) C.(﹣2,3) D.(﹣3,2)
二、填空题
13.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为 ,棋子②的坐标为 ,那么棋子③的坐标是 .
14.如图是某校的平面示意图,如果分别用(3,﹣1)、(﹣3,2)表示图中图书馆和实验楼的位置,那么校门的位置可表示为 .
15.如果将电影票上“6排3号”简记为(6,3),那么“9排21号”可表示为 .
16.如图,把“QQ”笑脸图标放在直角坐标系中,已知左眼A的坐标是(﹣2,3),右眼B的坐标为(0,3),则嘴唇C点的坐标是 .
17.小明的座位是第5列第3个,表示为M(5,3),他前面一个同学的座位可表示 .
18.如果点M(a+1,2-a)在第一象限内,则a的取值范围是
19.如果“2街5号”用坐标(2,5)表示,那么(3,1)表示
20.教室里座位整齐摆放,若小华坐在第四排第6行,用有效数对(4,6)表示,则(2,4)表示的含义是 .
21.电影院里5排2号可以用(5,2)表示,则(7,4)表示
22.如图,这是一所学校的平面示意图,在同一平面直角坐标系中,教学楼A的坐标为(-3,0),实验楼B的坐标为(2,0),则图书馆C的坐标为 .
23.同学们玩过五子棋吗?它的比赛规则是只要同色五子先成一条直线就算胜.如图是两人玩的一盘棋,若白①的位置是(2,-5),黑②的位置是(3,-4),现在轮到黑棋走,你认为黑棋放在 位置就可获胜.
24.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是 .
三、解答题
25.王林同学利用暑假参观了幸福村果树种植基地 如图 ,他出发沿 的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.
26.古城黄州以其名胜古迹吸引了不少游客,从地图上看,较有名的六外景点在黄州城内的分布是∶东坡赤壁在市政府以西2km再往南3km处,黄冈中学在市政府以东1km处,宝塔公园在市政府以东3km处,鄂黄大桥在市政府以东7km再往北8km处,遗爱湖在市政府以东4km再往北4km处,博物馆在市政府以北2km再往西1km处.请画图表示出这六个景点的位置,并用坐标表示出来.
27.如图的方格中有25个汉字,如四1表示“天”,请沿着以下路径去寻找你的礼物:
(1)一1→三2→二4→四3→五1
(2)五3→二1→二3→一5→三4
(3)四5→四1→一2→三3→五2.
28.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:
(1)请在图中建立适当的直角坐标系,并写出图书馆B位置的坐标;
(2)若体育馆位置坐标为C(-3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.
29.五子连珠棋的棋盘是15行15列的正方形,规定黑子先下,双方交替进行,在任意一个方向上,先连成5个子的一方获胜,如图所示的是两人所下的棋局的一部分,A点的位置记作(8,3),执白子的一方若想再放一子便获胜,应该把子落在什么位置?
四、综合题
30.平面直角坐标系中,三角形ABC的顶点都在网格点上.
(1)平移三角形ABC,使点C与坐标原点O是对应点,请画出平移后的三角形A′B′C′;
(2)写出A,B两点的对应点A′,B′的坐标;
(3)请直接写出三角形ABC的面积.
31.如图,是某动物园的示意图,如果在分别以正东、正北方向为 轴、 轴正方向的直角坐标系中,猴山和狮虎山的坐标分别是 和 ;
(1)请在图中画出这个平面直角坐标系;
(2)写出表示鸟园和鹿园的点的坐标;
(3)在图中标出熊猫馆 的位置.
32.如图是某次海战中交战双方舰艇的对峙示意图,对甲方潜艇来说:
(1)北偏东40°的方向上有哪些目标?要想确定乙方战舰B的位置,还需要什么数据?
(2)距甲方潜艇图上距离为1 cm处的乙舰有哪几艘?
(3)要确定每艘乙舰的位置,各需几个数据?
答案解析部分
1.【答案】B
【考点】用坐标表示地理位置
【解析】【解答】以车站为原点,正东为x轴正方向,正北为y轴正方向,那么小红家的坐标为(400,500),小强家的坐标为(-200,500),所以小强家在小红家正西.
【分析】根据题意建立平面直角坐标系解题更直观.
2.【答案】C
【考点】用坐标表示地理位置
【解析】【解答】由题图可知A地的位置为东经140° ,北纬50°.
【分析】根据所给题图求解即可。
3.【答案】C
【考点】用坐标表示地理位置
【解析】【解答】解:选项A、B是用区域定位法确定位置;选项D是用经纬度定位法确定位置,只有选项C不能够物体的具体位置.
故答案为:C.
【分析】平面内确定物体位置的方法有:区域定位法、经纬度定位法、坐标定位法、方位角+距离定位法,据此判断.
4.【答案】D
【考点】用坐标表示地理位置
【解析】【解答】根据平方的意义可知 ,则 ,即可判断点P所在象限.
,
∴点P( +1,-2)在第四象限
故答案为:D.
【分析】因为+10,-20,所以点P在第四象限。选项D符合题意。
5.【答案】D
【考点】用坐标表示地理位置
【解析】【解答】解:因为xy=0,所以x、y中至少有一个是0;
当x=0时,点在y轴上;
当y=0时,点在x轴上;
∵x≠y,
∴x、y不能同时为0.
即P不能是原点,
所以点P的位置是在x轴上或在y轴上(除原点).
故选D.
6.【答案】C
【考点】用坐标表示地理位置
【解析】【解答】解:∵点的横坐标-2<0,纵坐标-1<0,
∴点(-2,-1)在第三象限.
故选C.
【分析】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
7.【答案】A
【考点】用坐标表示地理位置
【解析】【解答】解:A.我校八年级(1)班班级座位3排4列,能确定具体位置,故符合题意;
B.滨海县育才路,不能确定具体位置,故不符合题意;
C.东经118°,不能确定具体位置,故不符合题意;
D.县一中北偏东60°,不能确定具体位置,故不符合题意.
故答案为:A.
【分析】根据用点的坐标确定地理位置是用一对有序实数对表示,由此可排除B,C,D,即可得到答案。
8.【答案】B
【考点】用坐标表示地理位置
【解析】【解答】解:“帅”的位置向右平移1个单位,上移两个单位(0,0),
故选:B.
【分析】根据“帅”的位置向右平移1个单位,上移两个单位,可得答案.
9.【答案】C
【考点】用坐标表示地理位置
【解析】【分析】根据方向角确定坐标位置对各选项分析判断后利用排除法求【解答】
A、炎陵位于株洲市区南偏东约35°的方向上正确,故本选项错误;
B、醴陵位于攸县的北偏东约16°的方向上正确,故本选项错误;
C、应为株洲县位于茶陵的北偏西约40°的方向上,故本选项正确;
D、株洲市区位于攸县的北偏西约21°的方向上正确,故本选项错误。
故选C。
10.【答案】A
【考点】用坐标表示地理位置
【解析】【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;
根据得出的坐标系可知,棋子“炮”的坐标为(3,2).
故选:A.
【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.
11.【答案】D
【考点】用坐标表示地理位置
【解析】【分析】直接利用刻度尺和量角器进行测量来判断.
【解答】通过测量,宿舍楼位置是D.
故选D.
【点评】本题主要考查了学生的动手操作能力、利用点的坐标解决实际问题的能力和阅读理解能力.
12.【答案】D
【考点】点的坐标;用坐标表示地理位置
【解析】【解答】解:由“ 位于点(1,﹣1)”知,y轴为从左向右数的第四条竖直直线,且向上为正方向,x轴是从上往下数第四条水平直线,这两条直线交点为坐标原点.那么“ ”的位置为(﹣3,2).
故选D.
【分析】根据的点的坐标,建立平面直角坐标系,从而确定的点的坐标即可。
13.【答案】(1,-1)
【考点】用坐标表示地理位置
【解析】【解答】根据①②的坐标可推出坐标系如下图所示,
故③的坐标为(1,-1).
【分析】根据①的坐标为 ,棋子②的坐标为 推出x轴和y轴的位置,即可得到③的坐标.
14.【答案】(0,﹣2)
【考点】用坐标表示地理位置
【解析】【解答】解:如图,校门的位置可表示为(0,﹣2).
故答案为:(0,﹣2).
【分析】由图书馆和实验楼的表示的坐标特点可以确定图书馆位于第一象限,实验楼位于第二象限,再由坐标的具体位置确定花坛为平面直角坐标系的原点,校门的位置随之可以确定。
15.【答案】(9,21)
【考点】用坐标表示地理位置
【解析】【解答】由“6排3号”简记为(6,3)可知:括号中的第一个数表示排数,第二个数表示号数,
∴“9排21号”可表示为(9,21).
故答案为:(9,21)
【分析】根据题中所给的“6排3号”点的坐标,即可得出“9排21号”点的坐标。
16.【答案】(-1,1)
【考点】用坐标表示地理位置
【解析】【解答】解:∵左眼A的坐标是(-2,3),右眼B的坐标为(0,3),
∴嘴唇C的坐标是(-1,1),
故答案为:(-1,1)
【分析】根据左眼,右眼坐标,得到嘴唇C的坐标
17.【答案】(5,2)
【考点】用坐标表示地理位置
【解析】【解答】解:他前面一个同学的座位为第5列第2个,表示为(5,2).故答案为:(5,2).
【分析】由平面直角坐标系的特征可知这两个同学的横坐标相同,小明的纵坐标比他前面一个同学的纵坐标大1,则他前面一个同学的座位可表示(5,2).
18.【答案】-1
【考点】点的坐标;用坐标表示地理位置
【解析】【解答】解:∵点M(a+1,2-a)在第一象限,
∴a+1>0,2-a>0,
解得:-1<a<2.
19.【答案】3街1号
【考点】用坐标表示地理位置
【解析】【解答】解:∵“2街5号”用坐标(2,5)表示,
∴(3,1)表示“3街1号”.
故答案为:3街1号.
【分析】根据有序数对的两个数表示的含义解答即可.
20.【答案】第二排第4行
【考点】用坐标表示地理位置
【解析】【解答】解:∵小华坐在第四排第6行,用有效数对(4,6)表示,
∴(2,4)表示的含义是:第二排第4行.
故答案为:第二排第4行.
【分析】利用已知坐标中第一个数字为排,第二个数字为行,进而得出答案.
21.【答案】7排4号
【考点】用坐标表示地理位置
【解析】【解答】解:根据题意知:前一个数表示排数,后一个数表示号数,
则(7,4)的意义为第7排4号.
故答案为:7排4号.
【分析】由“5排2号”记作(5,2)可知,有序数对与排号对应,(7,4)的意义为第7排4号.
22.【答案】(-1,-3)
【考点】用坐标表示地理位置;平面直角坐标系的构成
【解析】【解答】解:如图所示:
图书馆C的坐标为(-1,-3).
故答案为:(-1,-3).
【分析】根据题意直接利用已知点坐标进而建立平面直角坐标系,即可得出C点坐标.
23.【答案】(3,0)或(8, 5)
【考点】用坐标表示地理位置
【解析】【解答】解:如图所示,黑棋放在图中三角形位置,就能获胜,
∵白①的位置是:(2, 5),黑②的位置是:(3, 4),
∴P点为坐标原点的位置,
∴黑棋放在(3,0)或(8, 5)位置就能获胜.
故答案为:(3,0)或(8, 5).
【分析】根据黑棋放在如图位置就获得胜利,再根据白①的位置是(2,-5),黑②的位置是(3,-4),即可求出两点的坐标.
24.【答案】(2,﹣1)
【考点】用坐标表示地理位置
【解析】【解答】解:因为A(﹣2,1)和B(﹣2,﹣3),
所以可得点C的坐标为(2,﹣1),
故答案为:(2,﹣1).
【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.
25.【答案】解:由各点的坐标可知他路上经过的地方:葡萄园 杏林 桃林 梅林 山楂林 枣林 梨园 苹果园.
如图所示:
【考点】用坐标表示地理位置
【解析】【分析】由各点的坐标可知王林同学在路上经过的地方依次是:葡萄园 → 杏林 → 桃林 → 梅林 → 山楂林 → 枣林 → 梨园 → 苹果园.
26.【答案】解:如下图所示:
其坐标分别为∶东坡赤壁为(-2,-3),黄冈中学为(1,0),宝塔公园为(3,0),鄂黄大桥为(7,8),遗爱湖为(4,4),博物馆为(-1,2)
【考点】用坐标表示地理位置
【解析】【分析】考查建立平面直角坐标系,主要考查用坐标表示位置考点的理解.首先确定原点市政府,然后画出x,y轴,定单位长度为1km.根据题意描点即可.
27.【答案】解:(1)一1表示我,三2表示是,二4表示最,四3表示棒,五1表示的,所以礼物为:我是最棒的;(2)五3表示努,二1表示力,二3表示就,一5表示能,三4行,所以礼物为:努力就能行;(3)四5表示明,四1表示天,一2表示会,三3表示更,五2表示好,所以礼物为:明天会更好.
【考点】用坐标表示地理位置
【解析】【分析】(1)根据表格,分别找出一1→三2→二4→四3→五1表示的汉字,排列即可;
(2)根据表格,分别找出五3→二1→二3→一5→三4表示的汉字,排列即可;
(3)根据表格,分别找出四5→四1→一2→三3→五2表示的汉字,排列即可.
28.【答案】(1)解:建立直角坐标系如图所示:
图书馆B位置的坐标为(-3,-2)。
(2)解:标出体育馆位置C如图所示,
观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为10.
【考点】用坐标表示地理位置
【解析】【分析】(1)利用已知的学校的坐标,找到原点,画出直角坐标系,观察写出B点的坐标。(2)求△ABC的面积,可利用坐标求出B到C点距离作为底,A点到BC的距离为高,进行计算。
29.【答案】解:连成一条直线就获胜,那么执白子的一方应该把子落在(0,2)或(5,7)处。
【考点】用坐标表示地理位置
【解析】【分析】根据五子棋的规则,只要同一棋子直接连成5子或连成4子且两端位置为空,可获胜,就可得出答案。
30.【答案】(1)解:如图所示,△A′B′C′即为所求作的三角形;
(2)解:点A′、B′的坐标分别为A′(1,﹣3)、B′(3,1)
(3)解:S△ABC=3×4﹣ ×3×1﹣ ×2×4﹣ ×1×3,
=12﹣ ﹣4﹣ ,
=12﹣7,
=5.
【考点】用坐标表示地理位置;坐标与图形变化﹣平移
【解析】【分析】根据平移的性质点C与坐标原点O是对应点,图形先向下平移2个单位长度,再向左平移1个单位长度,得到点A′、B′的坐标分别为A′(1,﹣3)、B′(3,1);三角形ABC的面积等于矩形面积减去其他三个图形面积即可.
31.【答案】(1)解:如图:
(2)鸟园 ,鹿园
(3)解:如图:
【考点】用坐标表示地理位置
【解析】【分析】(1)将表示狮虎山的点向下平移3个单位长度后的对应点作为坐标原点建立平面直角坐标系即可;
(2)根据坐标系写出鸟园和鹿园的点的坐标即可;
(3)直接在坐标轴中找到(2,-2)点即可.
32.【答案】(1)解:对甲方潜艇来说,北偏东40°的方向上有两个目标,乙方战舰B和小岛;要确定乙方战舰B的位置,还要知道乙方战舰到甲方潜艇的距离
(2)解:距甲方潜艇图上距离为1cm处的乙舰有两艘:乙方战舰A和乙方战舰C.
(3)解:要确定每艘乙舰的位置,各需两个数据:距离和方位角.如对甲方潜艇来说,乙方战舰A在正南方向,图上距离1cm处;乙方战舰B在北偏东40°方向,图上距离为1.2cm处;乙方战舰C在正东方向,图上距离为1 cm处.
【考点】用坐标表示地理位置
【解析】【分析】(1)由图知,北偏东40°的方向上的目标有:乙方战舰B和小岛;要确定乙方战舰B的位置,还要知道乙方战舰到甲方潜艇的距离;
(2)由图知,距甲方潜艇图上距离为1cm处的乙舰有乙方战舰A和乙方战舰C;
(3)在平面内,要确定一个点的位置,需要距离和方位角两个数据即可。
点击下载
同课章节目录
第五章 相交线与平行线
5.1 相交线
5.2 平行线及其判定
5.3 平行线的性质
5.4 平移
第六章 实数
6.1 平方根
6.2 立方根
6.3 实数
第七章 平面直角坐标系
7.1 平面直角坐标系
7.2 坐标方法的简单应用
第八章 二元一次方程组
8.1 二元一次方程组
8.2 消元---解二元一次方程组
8.3 实际问题与二元一次方程组
8.4 三元一次方程组的解法
第九章 不等式与不等式组
9.1 不等式
9.2 一元一次不等式
9.3 一元一次不等式组
第十章 数据的收集、整理与描述
10.1 统计调查
10.2 直方图
10.3 课题学习从数据谈节水
点击下载
VIP下载