9.2 分式的运算
第3课时
教学目标
1.理解并掌握分式加减法法则;
2.会利用分式加减法法则熟练地进行异分母分式加减法计算.
教学重难点
【教学重点】
分式加减法法则.
【教学难点】
利用分式加减法法则熟练地进行异分母分式加减法计算.
课前准备
课件
教学过程
一、情境导入
1.请同学们说出,,的最简公分母是什么?你能说出最简公分母的确定方法吗?
2.你能举例说明分数的加减法法则吗?仿照分数加法与减法的法则,你会做以下题目吗?
(1)+;(2)+-.
分式的加减法的实质与分数的加减法相同,你能说出分式的加减法法则吗?
今天我们就学习分式加减法.
二、合作探究
探究点一:同分母分式的加减
计算:(1)-;(2)+.
解析:按照同分母分式相加减的方法进行运算.
解:(1)-=====a-b;
(2)+=-==.
方法总结:(1)当分子是多项式,把分子相减时,千万不要忘记加括号;(2)分式加减运算的结果,必须要化成最简分式或整式;(3)当两个分式的分母互为相反数时可变形为同分母的分式.
探究点二:异分母分式的加减
【类型一】 异分母分式的加减运算
计算:
(1)-x-1;
(2)-.
解析:(1)先将整式-x-1变形为分母为x-1的分式,再根据同分母分式加减法法则计算即可;(2)先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.
解:(1)-x-1=-=;
(2)-=-==.
方法总结:在分式的加减运算中,如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.
【类型二】 异分母分式的化简求值
先化简,再求值:-,其中x=2015.
解析:先通分并利用同分母分式的减法法则计算,后约分化简,最后代入求值.
解:原式=-===,当x=2015时,原式=.
方法总结:在解题的过程中要注意通分和化简.
【类型三】 异分母分式的简便运算
已知下面一列等式:
1×=1-;×=-;
×=-;×=-;…
(1)请你从上边这些等式的结构特征写出它们的一般性等式;
(2)验证一下你写出的等式是否成立;
(3)利用等式计算:+++.
解析:(1)观察已知的四个等式,发现等式的左边是两个分数之积,这两个分数的分子都是1,后面一个分数的分母比前面一个分数的分母大1,并且第一个分数的分母与等式的序号相等,等式的右边是这两个分数之差,据此可写出一般性等式;(2)根据分式的运算法则即可验证;(3)根据(1)中的结论求解.
解:(1)·=-;
(2)∵-=-==·,∴·=-;
(3)原式=(-)+(-)+(-)+(-)=-=.
方法总结:本题是寻找规律的题型,考查了学生分析问题、归纳问题及解决问题的能力.总结规律要从整体和部分两个方面入手,防止片面总结出错误结论.
三、板书设计
1.分式的加减法则
同分母的分式相加减,分母不变,分子相加减.异分母的分式相加减,先通分,变为同分母的分式后再加减.
2.分式的加减法的应用
四、教学反思
从分数加减法引入,类比得出分式的加减法,最关键的是法则的探究,重点是法则的运用,易错点是分母互为相反数,要化成同分母分式,在这个过程中要注意变号.学生在教师的指导下,先独立进行自学,自己解决不了的问题在小组内讨论交流进行解决