华东师大版七年级数学(上册)
7.2 一元二次方程组的解法
——第三课时教学设计
教学目的
1.使学生进一步理解解方程组的消元思想。
2.使学生了解加减法是消元法的又一种基本方法,并使他们会用加减法解一些简单的二元一次方程组。
重点、难点
1,重点:用加减法解二元一次方程组。
2.难点:两个方程相减消元时对被减的方程各项符号要做变号处理。
教学过程
一、复习
1.解二元一次方程组的基本思想是什么
2.用代人法解方程组
3x+5y=5 ①
3x-4y=23 ②
学生口述解题过程,教师板书。
二、新授
对复习2的反思并引入新课。
用代入法解二元一次方程的基本思想是消元,只有消去一个未知数,才能把二元转化为熟悉的一元方程求解,为了消元,除了代入法还有其他的方法吗 (让学生主动探求解法,适当时教师可作以下引导)
观察方程组在这个方程组中,未知数x的系数有什么特点 怎样才能把这个未知数消去 你的根据是什么
这两个方程中未知数x的系数相同,都是3,只要把这两个方程的左边与左边相减、右边与右边相减,就能消去x从而把它转化为一元一次方程。把方程①两边分别减去方程②的两边,相当于把方程①的两边分别减去两个相等的整式。
为了避免符号上的错误 (3x+5y)-(3x-4y)=5-23
板书示范时可以如下: 3x+5y-3x+4y=-18
解:把①-②得 9y=-18
y=-2
把y=-2代入①,得 3x+5×(-2)=5
解得 x=5
∴ x=5 这结果与用代入法解的结果一样
y=-2 也可以通过检验
从上面的解答过程中,你发现了二元一次方程组的新解法吗?让学生自己概括一下。
例2.解方程组 3x+7y=9 ①
4x-7y=5 ②
[ 怎样解这个方程组呢 用什么方法消去一个未知数 先消哪个未 知数比较方便?
①+②,得 7x=14 [ 两个方程中,未知数y的系数是互为相反
x=2 数,而互为相反数的和为零,所以应把方程
将x=2代入①,得 ①的两边分别加上方程②的两边]
6+7y=9
y=
∴ x=2
y=
以上两个例子是通过将两个方程相加(或相减),消去一个未知数,将 方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法。
三、巩固练习
教科书第32页,练习1、2。
四、拓展延伸:
例2、解方程组: 3m+2n=8 ①
3m-2n=16 ②
五、小结
今天我们又学习了解二元一次方程组的另一种方法――加减法,它是通过把两个方程两边相加(或相减)消去一个未知数,把二元一次方程组转化为一元一次方程。请同学们归纳一下,用加减消元法解方程组的基本思路和步骤。
五、作业
教科书第32页练习3、4。