高中数学北师大版(2019)必修第一册第七章概率综合强化4
第I卷(选择题)
请点击修改第I卷的文字说明
一、单选题
1.口袋里放有大小相等的两个红球和一个白球,有放回地每次摸取一个球,定义数列,如果为数列的前项和,那么 且的概率为
A. B. C. D.
2.如图为我国数学家赵爽约3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为
A. B. C. D.
3.一个电路如图所示,A,B,C,D,E,F为6个开关,其闭合的概率为,且是相互独立的,则灯亮的概率是( )
A. B. C. D.
4.袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( )
A. B.
C. D.
5.高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的铁钉(如图所示),并且每一排钉子数目都比上一排多一个,一排中各个钉子正好对准上面一排两个相邻铁钉的正中央从入口处放入一个直径路小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接若小球再通过两钉的间隙,又碰到下一排铁钉.如此继续下去,小球最后落入下方条状的格子内求小球落到第7个格子(从左开始)的概率是( )
A. B. C. D.
6.在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:①每人可发球7次,每成功一次记1分;②若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是( )
A. B. C. D.
二、多选题
7.4支足球队进行单循环比赛(任两支球队恰进行一场比赛),任两支球队之间胜率都是.单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小排名次顺序,成绩相同则名次相同.下列结论中正确的是( )
A.恰有四支球队并列第一名为不可能事件 B.有可能出现恰有三支球队并列第一名
C.恰有两支球队并列第一名的概率为 D.只有一支球队名列第一名的概率为
第II卷(非选择题)
请点击修改第II卷的文字说明
三、填空题
8.有下列说法
①互斥事件不一定是对立事件,对立事件一定是互斥事件
②演绎推理是从特殊到一般的推理,它的一般模式是“三段论”
③残差图的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高
④若,则事件与互斥且对立
⑤甲乙两艘轮船都要在某个泊位停靠4小时,假定它们在一昼夜的时间段中随机到达,则这两艘船中至少有一艘在停靠泊位时必须等待的概率为.
其中正确的说法是______(写出全部正确说法的序号).
9.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.
10.将给定的15个互不相同的实数,排成五行,第一行1个数,第二行2个数,第三行3个数,第四行4个数,第五行5个数,则每一行中的最大的数都小于后一行中最大的数的概率是________.
11.由1, 2, 3, …,1000这个1000正整数构成集合,先从集合中随机取一个数,取出后把放回集合,然后再从集合中随机取出一个数,则的概率为______.
四、解答题
12.如图,正方形是某城市的一个区域的示意图,阴影部分为街道,各相邻的两红绿灯之间的距离相等,处为红绿灯路口,红绿灯统一设置如下:先直行绿灯30秒,再左转绿灯30秒,然后是红灯1分钟,右转不受红绿灯影响,这样独立的循环运行.小明上学需沿街道从处骑行到处(不考虑处的红绿灯),出发时的两条路线()等可能选择,且总是走最近路线.
(1)请问小明上学的路线有多少种不同可能?
(2)在保证通过红绿灯路口用时最短的前提下,小明优先直行,求小明骑行途中恰好经过处,且全程不等红绿灯的概率;
(3)请你根据每条可能的路线中等红绿灯的次数的均值,为小明设计一条最佳的上学路线,且应尽量避开哪条路线?
13.为科学合理地做好小区管理工作,结合复工复产复市的实际需要,某小区物业提供了A,B两种小区管理方案,为了决定选取哪种方案为小区的最终管理方案,随机选取了4名物业人员进行投票,物业人员投票的规则如下:①单独投给A方案,则A方案得1分,B方案得-1分;②单独投给B方案,则B方案得1分,A方案得-1分;③弃权或同时投票给A,B方案,则两种方案均得0分.当前一名物业人员的投票结束,再安排下一名物业人员投票,当其中一种方案比另一种方案多4分或4名物业人员均已投票时,就停止投票,最后选取得分多的方案为小区的最终管理方案.假设A,B两种方案获得每一名物业人员投票的概率分别为和.
(1)在第一名物业人员投票结束后,A方案的得分记为,求的分布列;
(2)求最终选取A方案为小区管理方案的概率.
14.某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:
方案一:逐瓶检验,则需检验次;
方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.
(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;
(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.
若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.
(i)若与的期望相等.试求关于的函数解析式;
(ii)若,且采用方案二总次数的期望小于采用方案一总次数的期望.求的最大值.
参考数据:
15.为落实《关于全面加强和改进新时代学校体育工作的意见》,完善学校体育“健康知识+基本运动技能+专项运动技能”教学模式,建立“校内竞赛-校级联赛-选拔性竞赛-国际交流比赛”为一体的竞赛体系,构建校、县(区)、地(市)、省、国家五级学校体育竞赛制度.某校开展“阳光体育节”活动,其中传统项目“定点踢足球”深受同学们喜爱.其间甲、乙两人轮流进行足球定点踢球比赛(每人各踢一次为一轮),在相同的条件下,每轮甲、乙两人在同一位置,甲先踢,每人踢一次球,两人有1人命中,命中者得1分,未命中者得分;两人都命中或都未命中,两人均得0分,设甲每次踢球命中的概率为,乙每次踢球命中的概率为,且各次踢球互不影响.
(1)经过1轮踢球,记甲的得分为,求的数学期望;
(2)若经过轮踢球,用表示经过第轮踢球累计得分后甲得分高于乙得分的概率.
①求,,;
②规定,且有,请根据①中,,的值求出、,并求出数列的通项公式.
试卷第1页,共3页
试卷第1页,共3页
参考答案
1.A
【分析】
说明共摸球七次,只有两次摸到红球,由于每次摸球的结果数之间没有影响,故可以用独立事件的概率乘法公式求解,再求出前两次为,后五次均为1的概率,即可得出结论.
【详解】
由题意说明共摸球七次,只有两次摸到红球,5次白的,
每次取得红球的概率为,取得白球的概率为,则;
又,所以,前两次不能为,
前两次为,后五次均为1的概率为:,
所以所求概率为:.
故选A.
【点睛】
本题考查独立事件的概率乘法公式,考查学生分析解决问题的能力,确定说明共摸球七次,只有两次摸到红球是关键.
2.D
【分析】
利用分步计数原理求出不同的涂色方案有420种,其中,区域涂色不相同的情况有120种,由此根据古典概型概率公式能求出区域涂色不相同的概率.
【详解】
提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,
根据题意,如图,设5个区域依次为,分4步进行分析:
,对于区域,有5种颜色可选;
,对于区域与区域相邻,有4种颜色可选;
,对于区域,与区域相邻,有3种颜色可选;
,对于区域,若与颜色相同,区域有3种颜色可选,
若与颜色不相同,区域有2种颜色可选,区域有2种颜色可选,
则区域有种选择,
则不同的涂色方案有种,
其中,区域涂色不相同的情况有:
,对于区域,有5种颜色可选;
,区域,有4种颜色可选;
对于区域,有3种颜色可选;
,若与颜色相同,区域有2种颜色可选;
若与颜色不相同,区域有2种颜色可选,区域有1种颜色可选;
所以区域有种选择;
不同的涂色方案有种,
区域涂色不相同的概率为 ,故选D.
【点睛】
本题考查古典概型概率公式的应用,考查分步计数原理等基础知识,考查运算求解能力,是中档题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率.
3.B
【详解】
设与中至少有一个不闭合的事件为与至少有一个不闭合的事件为,则,所以灯亮的概率为 , 故选B.
【方法点睛】本题主要考查独立事件、对立事件的概率公式,属于难题.解答这类综合性的概率问题一定要把事件的独立性、互斥性与对立性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.
4.A
【分析】
根据分层抽样的方法计算出每种颜色所抽取的数量,在根据分步计数原理和古典概型概率计算公式,计算出所求的概率.
【详解】
根据分层抽样的知识可知,抽样比为,即红球个,蓝球个,白球个,黄球个,根据分步计数原理和古典概型概率计算公式得所求概率为,故选A.
【点睛】
本小题主要考查分层抽样抽样比的计算,考查分步计数原理,考查古典概型概率计算,考查组合数的计算,属于基础题.
5.C
【分析】
落入第7个格子需要次左次右,计算概率得到答案.
【详解】
小球从开始下落到结束共有9次左右下落情况,落入第7个格子需要次左次右,
故概率是:.
故选:.
【点睛】
本题考查了概率的计算,意在考查学生的理解能力和计算能力.
6.B
【分析】
明确恰好得5分的所有情况:发球四次得分,有两个连续得分和发球四次得分,有三个连续得分,分别求解可得.
【详解】
该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率,所求概率;故选B.
【点睛】
本题主要考查相互独立事件的概率,题目稍有难度,侧重考查数学建模和数学运算的核心素养.
7.ABD
【分析】
4支足球队进行单循环比赛总的比赛共有场比赛,比赛的所有结果共有种;
选项A,这6场比赛中不满足4支球队得分相同的的情况;
选项B,举特例说明即可;
选项C,在6场比赛中,从中选2支球队并列第一名有种可能,再分类计数相互获胜的可能数,最后由古典概型计算概率;
选项D,只有一支球队名列第一名,则该球队应赢了其他三支球队,由古典概型问题计算即可.
【详解】
4支足球队进行单循环比赛总的比赛共有场比赛,比赛的所有结果共有种;
选项A,这6场比赛中若4支球队优先各赢一场,则还有2场必然有2支或1支队伍获胜,那么所得分值不可能都一样,故是不可能事件,正确;
选项B,其中6场比赛中,依次获胜的可以是,此时3队都获得2分,并列第一名,正确;
选项C,在6场比赛中,从中选2支球队并列第一名有种可能,若选中a,b,其中第一类a赢b,有a,b,c,d,a,b和a,b,d,c,a,b两种情况,同理第二类b赢a,也有两种,故恰有两支球队并列第一名的概率为,错误;
选项D,从4支球队中选一支为第一名有4种可能;这一支球队比赛的3场应都赢,则另外3场的可能有种,故只有一支球队名列第一名的概率为,正确.
故选:ABD
【点睛】
本题考查利用计数原理解决实际问题的概率问题,还考查了事件成立与否的判定,属于较难题.
8.①③⑤
【解析】
【分析】
由事件的互斥和对立的概念可判断①;由演绎推理的定义可判断②;由残差图的形状可判断③;考虑几何概型事件的概率可判断④;设出甲、乙到达的时刻,列出所有基本事件的约束条件同时列出这两艘船中至少有一艘在停靠泊位时必须等待约束条件,利用线性规划作出平面区域,利用几何概型概率公式求出概率,可判断⑤.
【详解】
对于①,互斥事件不一定是对立事件,但对立事件一定是互斥事件,故①正确;
对于②,演绎推理是从一般到特殊的推理,它的一般模式是“三段论”,故②错误;
对于③,残差图的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高,故③正确;
对于④,若P(A∪B)=P(A)+P(B)=1,则事件A与B不一定互斥且对立,
例如几何概型:在[-1,1]任取实数,则事件A;事件B:则有P(A∪B)=P(A)+P(B)=1,但事件A与B不互斥,故④错误;
对于⑤,设甲到达的时刻为x,乙到达的时刻为y则所有的基本事件构成的
区域Ω满足,
这两艘船中至少有一艘在停靠泊位时必须等待包含的基本事件构成的区域A满足,作出对应的平面区域如图,
这两艘船中至少有一艘在停靠泊位时必须等待的概率
,故⑤正确.
故答案为①③⑤.
【点睛】
本题考查命题的真假判断,主要是事件的互斥和对立,以及几何概率的求法,考查判断能力和推理能力,属于中档题.
9.
【分析】
首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是的事件数,根据古典概型概率计算公式计算出所求概率.
【详解】
根据“钟型验证码” 中间数字最大,然后向两边对称递减,所以中间的数字可能是.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
当中间是时,其它个数字可以是,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有种.
所以该验证码的中间数字是7的概率为.
故答案为:
【点睛】
本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.
10.
【分析】
通过分析最大数在第行的概率,得到规律,从而可求得结果
【详解】
解:设是从上往下数第行的最大数,设的概率为,最大数在第行的概率为,
在任意排好第行后余下的个数排在前行符合要求的排列的概率为,
所以,以此类推,
,
所以当时,,
故答案为:
【点睛】
关键点点睛:此题考查古典概型的概率的求法,考查推理能力和计算能力,解题的关键是求出最大数要第行的概率为,通过分析得到,以此类推,,从而可求得结果,属于较难题
11.
【分析】
根据题意,,且,要使得,即:,分类讨论当时,对应的的值,得出所有取法,即可求出的概率.
【详解】
解:由题可知,,且,
要使得,即:,则有:
当时,或,有2种取法;
当时,的取值增加3、4、5,有2+3种取法;
当时,的取值增加6、7、8,有种取法;
当时,有种取法;
当时,都有1000种取法.
故
.
故答案为:.
【点睛】
本题考查古典概型求概率,考查分类讨论思想和计算能力.
12.(1)6种;(2);(3).
【分析】
(1)从4条街中选择2条横街即可;
(2)小明途中恰好经过处,共有4条路线,即,,,,分别对4条路线进行分析计算概率;
(3)分别对小明上学的6条路线进行分析求均值,均值越大的应避免.
【详解】
(1)路途中可以看成必须走过2条横街和2条竖街,即从4条街中选择2条横街即可,所以路线总数为条.
(2)小明途中恰好经过处,共有4条路线:
①当走时,全程不等红绿灯的概率;
②当走时,全程不等红绿灯的概率;
③当走时,全程不等红绿灯的概率;
④当走时,全程不等红绿灯的概率.
所以途中恰好经过处,且全程不等信号灯的概率
.
(3)设以下第条的路线等信号灯的次数为变量,则
①第一条:,则;
②第二条:,则;
③另外四条路线:;;
,则
综上,小明上学的最佳路线为;应尽量避开.
【点睛】
本题考查概率在实际生活中的综合应用问题,考查学生逻辑推理与运算能力,是一道有一定难度的题.
13.(1)分布列见解析 (2)
【分析】
(1)由题意知,所有可能取值为,0,1,然后,列出的分布列即可;
(2记表示事件“前2名物业人员进行了投票,且最终选取A方案为小区管理方案”,记表示事件“前3名物业人员进行了投票,且最终选取A方案为小区管理方案”,记表示事件“共有4名物业人员进行了投票,且最终选取A方案为小区管理方案”,记选取A方案为小区管理方案的概率为P,然后分别求出 P( ),P(),P()的值,则选取A方案为小区管理方案的概率为:P= P( )+P()+P(),然后计算求解即可.
【详解】
由题意知,所有可能取值为,0,1,
的分布列为:
(2)记表示事件“前2名物业人员进行了投票,且最终选取A方案为小区管理方案”,由(1)知,,
记表示事件“前3名物业人员进行了投票,且最终选取A方案为小区管理方案”,
,
记表示事件“共有4名物业人员进行了投票,且最终选取A方案为小区管理方案”,
①若A方案比B方案多4分,有两类:
第一类,A方案前三次得了一次1分两次0分,最后一次得1分,其概率为
,
第二类,A方案前两次得了一次1分一次分,后两次均得1分,其概率为
,
②若A方案比B方案多2分,有三类:
第一类,A方案四次中得了一次1分,其他三次全0分,其概率为
,
第二类,A方案前三次得了一次Ⅰ分,一次0分,一次分,最后一次得了1分,其概率为 ,
第三类,A方案前两次得了一次1分一次分,第三次得1分,第四次得0分,其概率为
,
故,
最终选取A方案为小区管理方案的概率为
【点睛】
本题主要考查了随机分布列的问题,考查了分类讨论的思想,考查了独立事件的概率,属于难题.
14.(1)(2)(ⅰ)(ii)8
【分析】
(1)对可能的情况分类:<1>前两次检验出一瓶含有细菌第三次也检验出一瓶含有细菌,<2>前三次都没有检验出来,最后就剩下两瓶含有细菌;(2)(i)根据,找到与的函数关系;(ii)根据得到关于的不等式式,构造函数解决问题.
【详解】
解:(1)记所求事件为,“第三次含有细菌且前2次中有一次含有细菌”为事件,“前三次均不含有细菌”为事件,
则,且互斥,
所以
(2),
的取值为,
,
所以,
由得,
所以;
(ii),所以,
所以,所以
设,
,
当时,在上单调递增;
当时,在上单调递减
又,
所以的最大值为8
【点睛】
本题考查离散型随机变量的均值以及随机事件的概率计算,难度较难.计算两个事件的和事件的概率,如果两个事件互斥,可将结果写成两个事件的概率之和;均值(或期望)的相关计算公式要熟记..
15.(1);(2)①,,;②,.
【分析】
(1)的可能取值为,0,1,分别求出相应的概率,由此能求出的分布列与期望;
(2)①,经过2轮投球甲的累计得分高有两种情况:一是2轮甲各得1分,二是2轮中有1轮甲得0分,有1轮甲得1分,由此能求出.经过3轮投球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有1轮得1分,2轮各得0分;甲3轮中有2轮各得1分,1轮得分.由此能求出.
②推导出,将,代入得,,推导出是首项与公比都是的等比数列,由此能求出结果.
【详解】
(1)记一轮踢球,甲命中为事件,乙命中为事件,,相互独立.
由题意,,甲的得分的可能取值为,0,1.
,
.
,
∴的分布列为:
0 1
.
(2)①由(1),
.
经过三轮踢球,甲累计得分高于乙有四种情况:甲3轮各得1分;甲3轮中有2轮各得1分,1轮得0分;甲3轮中有1轮得1分,2轮各得0分;甲3轮中有2轮各得1分,1轮得分.
∴,
②∵规定,且有,
∴代入得:,
∴,∴数列是等比数列,
公比为,首项为,∴.
∴.
【点睛】
关键点睛:利用待定系数法得到后,紧扣等比数列定义是解决问题的关键.
答案第1页,共2页
答案第1页,共2页