2021-2022年初中数学八年级下册同步(北师大版)
2.4一元一次不等式-课堂练习
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.在数学表达式:,,,,,中,是一元一次不等式的有( ).
A.1个 B.2个 C.3个 D.4个
2.不等式中,可取的最大整数值是( )
A.0 B.1 C.2 D.3
3.某次篮球联赛中,火炬队与月亮队要争夺一个出线权,火炬队目前的战绩是17胜13负(其中有1场以4分之差负于月亮队),后面还要比赛6场(其中包括再与月亮队比赛1场);月亮队目前的战绩是15胜16负,后面还要比赛5场.如果火炬队在后面对月亮队1场比赛中至少胜月亮队5分,那么它在后面的其他比赛中至少胜( )场就一定能出线?
A.1 B.2 C.3 D.4
4.不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
5.已知方程组有正数解,则的取值范围是( )
A. B. C. D.
6.不等式4-2x>0的最大正整数解是( ).
A.4 B.3 C.2 D.1
二、填空题
7.当x______________时,的值是非负数.
8.不等式①,②,③,④,⑤,⑥中一元一次不等式是________.(只填序号)
9.的整数解是________.
10.若不等式的正整数解是,则的取值范围是____.
11.在一次知识竞赛有50道题,评分标准:答对一道得2分,答错一道倒扣1分,不答得0分,某学生有4道题没有答,这个学生至少答对________道题,成绩才能不低于82分?
12.将长为2、宽为a(a大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作:再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作:如此反复操作下去…,若在第n次操作后,剩下的长方形恰为正方形,则操作终止当n=3时,a的值为______.
三、解答题
13.解不等式:
(1)
(2)
14.求不等式的正整数解.
15.判断下列不等式是不是一元一次不等式.
(1). (2). (3).
16.解下列不等式,并把它们的解集分别表示在数轴上:
(1);(2);(3);(4).
17.老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔数增加了2只,老李养兔数比买入种兔数的2倍少1只,老张养兔教不超过老李养兔数的.一年前老张至少买了多少只种兔?
试卷第2页,共3页
试卷第3页,共3页
参考答案
1.A
【解析】-3<0是不等式,不是一元一次不等式;
是整式,不是一元一次不等式;
x=3是方程,不是一元一次不等式;
x2+2xy+y2是整式,不是一元一次不等式;
x≠5是一元一次不等式;
x+2>y+3是二元一次不等式,不是一元一次不等式;
∴是一元一次不等式的有1个
故选:A.
2.B
【解析】解:,
,
最大整数解是1.
故选为:B.
3.A
【解析】解设火炬队在后面的比赛中胜x场就一定能出线.
∵火炬队在后面对月亮队1场比赛中至少胜月亮队5分,
那么火炬队目前的战绩是18胜13负,后面还要比赛5场;月亮队目前的战绩为15胜17负,后面还要比赛4场;月亮队在后面的比赛中至多胜4场,所以整个比赛它至多胜场.
需有.
解得.
因此火炬队在后面的比赛中至少胜1场就一定能出线,
故选:A.
4.A
【解析】
解不等式①得:x<2,
解不等式②得:x≥﹣1,
则不等式组的解集为﹣1≤x<2,
在数轴上表示为:
故选:A.
5.D
【解析】解:,
由方程变形得,
把③代入①得,
解得,
方程组有正数解,
∴,
∴,
∴.
故选择D.
6.D
【解析】解:移项,得:-2x>-4,
系数化为1,得:x<2,
∴不等式4-2x>0的最大正整数解是1.
故选D.
7.
【解析】的值是非负数,即:
故答案为:.
8.②⑥
【解析】解:①,含有两个未知数,不合题意;
②,是一元一次不等式,符合题意;
③,不等式左边是分式,不符合题意;
④,未知数次数不为,不符合题意;
⑤,即为,不符合题意;
⑥,是一元一次不等式,符合题意;
故答案为:②⑥.
9.0,1,2,3
【解析】解:,
移项得,,
合并同类项得,,
,
的整数解是0,1,2,3.
故答案为:0,1,2,3.
10.9≤a<12
【解析】解:解不等式3x a≤0,得x≤,
∵不等式的正整数解是1,2,3,
∴3≤<4,
解得9≤a<12.
故答案为:9≤a<12.
11.43
【解析】解:设他答对了x道题,
根据题意,得:2x-(50-4-x)≥82,
解得:x≥42,
所以,他至少答对了43道题
故答案为:43
12.或
【解析】解:第1次操作,剪下的正方形边长为a,剩下的长方形的长宽分别为a、2-a,由1<a<2,得a>2-a
第2次操作,剪下的正方形边长为2-a,所以剩下的长方形的两边分别为2-a、a-(2-a)=2a-2,
①当2a-2<2-a,即a<时,
则第3次操作时,剪下的正方形边长为2a-2,剩下的长方形的两边分别为2a-2、(2-a)-(2a-2)=4-3a,
则2a-2=4-3a,解得a= ;
②2a-2>2-a,即a>时
则第3次操作时,剪下的正方形边长为2-a,剩下的长方形的两边分别为2-a、(2a-2)-(2-a)=3a-4,
则2-a=3a-4,解得a=;
故答案为或.
13.(1);(2)或.
【解析】解:(1)∵,
∴.
(2)∵,
原不等式变形为:或,
解得:或.
14.,2,3,4,5.
【解析】解:
4x+4≤24
4x≤20
x≤5.
所以不等式的正整数解为,2,3,4,5.
15.(1)是;(2)不是;(3)不是
【解析】解:(1)是一元一次不等式;
(2)是二元一次不等式,不是一元一次不等式;
(3)不等式的左边不是整式,不是一元一次不等式;
故答案为:(1)是;(2)不是;(3)不是.
16.1.(1);(2);(3);(4).数轴表示见解析
【解析】解:(1)∵5x<200,
∴x<40,
将解集表示在数轴上如下:
(2)∵,
∴x+1>-6,
则x>-7,
将解集表示在数轴上如下:
(3)∵x-4≥2(x+2),
∴x-4≥2x+4,
∴x-2x≥4+4,
∴-x≥8,
则x≤-8,
将解集表示在数轴上如下:
(4)∵,
∴3x-3<8x-10,
∴3x-8x<-10+3,
-5x<-7,
则x>,
将解集表示在数轴上如下:
17.一年前老张至少买了8只种兔.
【解析】设一年前老张至少买了只种兔,
根据题意可得:,
整理得: ,
解得:,
答:一年前老张至少买了8只种兔.
答案第6页,共6页
答案第7页,共1页