2021-2022学年鲁教版八年级数学下册《第6章特殊平行四边形》
解答题专题提升训练2(附答案)
1.已知:点E在菱形ABCD的边BC的延长线上,AE交CD于点F,FG∥CE交DE于点G.
求证:FG=FC.
2.如图,在正方形ABCD中,P是对角线BD上的一点,点E在边AD的延长线上,且PA=PE,PE交CD于点F.
(1)求证:PA=PC;
(2)求证:PC⊥PE.
3.如图,已知四边形ABCD是平行四边形,将边AB延长至点E,使AB=BE,联结DE、EC,DE与BC交于点O.
(1)求证:四边形BECD是平行四边形;
(2)若∠COE=2∠A,求证:四边形BECD是矩形.
4.已知:如图,四边形ABCD的对角线AC、BD相交于点O,AO=BO=CO,∠BAC=∠ACD.
(1)求证:四边形ABCD是矩形;
(2)如果点E在边AB上,DE平分∠ADB,BD=AB,求证:BD=AD+AE.
5.如图,在四边形ABCD中,AB∥CD,AD=CD,E是对角线BD上的一点,且AE=CE.
(1)求证:四边形ABCD是菱形;
(2)如果AB=BE,且∠ABE=2∠DCE,求证:四边形ABCD是正方形.
6.已知:如图,在四边形ABCD中,AB∥DC,对角线AC、BD交于点O,过点C作CE⊥CD交AB的延长线于点E,联结OE,OC=OE.
(1)求证:OE=AC;
(2)如果DB平分∠ADC,求证:四边形ABCD是菱形.
7.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:BD=CD;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.
8.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.
(1)求证:四边形ABCD是正方形.
(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.
9.如图,已知△ABC是等边三角形,点D是BC延长线上的一个动点,以AD为边作等边△ADE,过点E作BC的平行线,分别交AB,AC的延长线于点F,G,联结BE.
(1)求证:△AEB≌△ADC;
(2)如果BC=CD,判断四边形BCGE的形状,并说明理由.
10.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.
(1)求证:OE=OF;
(2)若点O为CD的中点,求证:四边形DECF是矩形.
11.如图,已知四边形ABCD是正方形,点E、F、G、H分别在AB、BC、CD、和DA上,连接EG和FH小明和小亮对这个图形进行探索,发现了很多有趣的东西,同时他俩又进一步猜想
小明说:如果EG和HF互相垂直,那么EG和HF一定相等;
小亮说:如果EG和HF相等,那么EG和HF一定互相垂直;
请你对小明和小亮的猜想进行判断,并说明理由.
12.如图,已知点E是矩形ABCD的边CB延长线上一点,且CE=CA,连接AE,过点C作CF⊥AE,垂足为点F,连接BF、FD.
(1)求证:△FBC≌△FAD;
(2)连接BD,若,且AC=10,求FC的值.
13.如图,在矩形ABCD中,E是BC边上的点,连接DE、AE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.
(1)求证:△ABE≌△DFA;
(2)如果AB=6,EC:BE=1:4,求线段DE的长.
14.已知四边形ABCD,对角线AC、BD交于点O.现给出四个条件:①AC⊥BD;②AC平分对角线BD;③AD∥BC;④∠OAD=∠ODA.请你以其中的三个条件作为命题的题设,以“四边形ABCD为菱形”作为命题的结论.
(1)写出一个真命题,并证明;
(2)写出一个假命题,并举出一个反例说明(无需证明).
15.如图,点E、F分别为菱形ABCD边AD、CD的中点.
(1)求证:BE=BF;
(2)当△BEF为等边三角形时,求证:∠D=2∠A.
16.如图,在正方形ABCD中,点E是边BC延长线上一点,联结DE,过点B作BF⊥DE,垂足为点F,BF与边CD相交于点G.
(1)求证:CG=CE;
(2)联结CF,求证:∠BFC=45°;
(3)如果正方形ABCD的边长为2,点G是边DC的中点,求EF的长.
17.已知:如图四边形ABCD是菱形,E是对角线BD上的一点,联结AE、CE.求证:∠DAE=∠DCE.
18.如图,正方形ABCD中,点G是CD边上的一点(点G不与点C,点D重合),以CG为一边向正方形ABCD外做正方形GCEF,联结DE交BG的延长线于点H.
(1)求证:BH⊥DE;
(2)若正方形ABCD的边长为1,当点H为DE中点时,求CG的长.
19.如图,已知在四边形ABCD中,AD∥BC,点E为BC中点,BD⊥DC,EA平分∠DEB.
(1)求证:AE=DC;
(2)求证:四边形ABED是菱形.
20.如图,矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(﹣6,8).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,折痕与OA、x轴分别交于点D、F.
(1)求点D的坐标;
(2)若点N是平面内任一点,在x轴上是否存在点M,使M、N、E、O为顶点的四边形是菱形?若存在,请直接写出满足条件的点M的坐标;若不存在,请说明理由.
参考答案
1.证明:∵四边形ABCD是菱形,
∴AB=AD,DC∥AB,AD∥BC,
∵FG∥BC,
∴FG∥AD,
∴=,=,
∴=,
∴FG=FC.
2.(1)证明:∵四边形ABCD是正方形,
∴AD=CD,∠ADP=∠CDP,
在△ADP和△CDP中,
,
∴△ADP≌△CDP(SAS),
∴PA=PC,
(2)作PM⊥AE于M,PN⊥CD于N,
∵PD平分∠ADC,
∴PM=PN,
∵∠ADC=90°,
∴PNDM是矩形,∠MPN=90°,
在Rt△PME和Rt△PMC中,PC=PE,PM=PN,
∴Rt△PME≌Rt△PNC(HL),
∴∠MPE=∠NPC,
∴∠MPN=∠MPE+∠NPE=∠NPC+∠NPE=∠EPC=90°.
∴PC⊥PE.
3.证明:(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∵AB=BE,
∴BE=CD,且BE∥CD,
∴四边形BECD是平行四边形;
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A=∠EBO,
∵∠COE=2∠A=2∠EBO,∠COE=∠EBO+∠BEO,
∴∠EBO=∠BEO,
∴BO=EO,
由(1)得:四边形BECD是平行四边形,
∴,,
∴BC=ED,
∴平行四边形BECD是矩形.
4.证明:(1)在△AOB和△COD中,
,
∴△AOB≌△COD(ASA),
∴BO=DO,
∵AO=CO,
∴四边形ABCD是平行四边形,
∵AO=BO=CO,BO=DO,
∴AO=BO=CO=DO,
∴AC=BD,
∴平行四边形ABCD是矩形;
(2)过点E作EF⊥BD于F,如图所示:
由(1)得:四边形ABCD是矩形,
∴∠BAD=90°,
∵BD=AB,
∴△ABD是等腰直角三角形,
∴∠ABD=45°,
∵EF⊥BD,
∴∠EFB=∠EFD=90°,
∴△BEF是等腰直角三角形,
∴FE=FB,
∵DE平分∠ADB,
∴∠ADE=∠FDE,
在△ADE和△FDE中,
,
∴△ADE≌△FDE(AAS),
∴AD=FD,AE=FE,
∴AE=FB,
∵BD=FD+FB,
∴BD=AD+AE.
5.证明:(1)在△ADE与△CDE中,
,
∴△ADE≌△CDE(SSS),
∴∠ADE=∠CDE,
∵AB∥CD,
∴∠ABD=∠CDE,
∴∠ABD=∠ADE,
∴AB=AD,
∵AD=CD,
∴AB=CD,
∴四边形ABCD为平行四边形,
∵AD=CD,
∴四边形ABCD是菱形;
(2)∵△ADE≌△CDE,
∴∠DAE=∠DCE,
∵∠ABE=2∠DCE,
∴∠ABE=2∠DAE,
由(1)知,四边形ABCD是菱形,
∴AB=AD,
∴∠ABE=∠ADE=2∠DAE
∴∠AEB=∠ADE+∠DAE=3∠DAE,
∵AB=BE,
∴∠BAE=∠AEB=3∠DAE,
∴∠BAD=∠BAE+∠DAE=4∠DAE,
∵∠ABE+∠ADE+∠BAD=180°,
∴2∠DAE+2∠DAE+4∠DAE=180°,
∴4∠DAE=90°,
∴∠BAD=90°,
∵四边形ABCD是菱形,
∴四边形ABCD是正方形.
6.证明:(1)过O作OF⊥CE于F,如图所示:
∵OC=OE,
∴CF=EF,
∵OF⊥CE,CE⊥CD,
∴OF∥CD,
∵AB∥DC,
∴OF∥AB,
∴OF是△ACE的中位线,
∴OA=OC,
∴OE=AC;
(2)∵AB∥DC,
∴∠OAB=∠OCD,
在△AOB和△OCD中,
,
∴△AOB≌△OCD(ASA),
∴OB=OD,
∴四边形ABCD是平行四边形,
∴AD∥BC,
∴∠ADB=∠CBD,
∵DB平分∠ADC,
∴∠ADB=∠CDB,
∴∠CBD=∠CDB,
∴BC=DC,
∴平行四边形ABCD是菱形.
7.证明:
(1)∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中点,
∴AE=DE,
,
∴△AEF≌△DEC(AAS),
∴AF=DC,
∵AF=BD,
∴BD=CD;
(2)四边形AFBD是矩形.
理由:
∵AB=AC,D是BC的中点,
∴AD⊥BC,
∴∠ADB=90°
∵AF=BD,
∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,
∴四边形AFBD是平行四边形,
又∵∠ADB=90°,
∴四边形AFBD是矩形.
8.(1)证明:∵四边形ABCD是菱形,
∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,
∴∠BAD+∠ABC=180°,
∵∠CAD=∠DBC,
∴∠BAD=∠ABC,
∴2∠BAD=180°,∴∠BAD=90°,
∴四边形ABCD是正方形;
(2)证明:∵四边形ABCD是正方形,
∴AC⊥BD,AC=BD,CO=AC,DO=BD,
∴∠COB=∠DOC=90°,CO=DO,
∵DH⊥CE,垂足为H,
∴∠DHE=90°,∠EDH+∠DEH=90°,
∵∠ECO+∠DEH=90°,
∴∠ECO=∠EDH,
在△ECO和△FDO中,,
∴△ECO≌△FDO(ASA),
∴OE=OF.
9.证明:(1)∵等边△ABC和等边△ADE,
∴AB=AC,AE=AD,∠CAB=∠EAD=60°,
∵∠BAE+∠EAC=60°,∠DAC+∠EAC=60°,
∴∠BAE=∠CAD,
在△AEB和△ADC中
∴△AEB≌△ADC(SAS);
(2)解:四边形BCGE的形状是菱形,
理由是:∵△AEB≌△ADC
∴∠ABE=∠ACD,BE=CD,
∵∠ABC=∠ACB=60°,
∴∠ABE=∠ACD=∠BCG=120°,
∴∠DBE=60°,
∴∠BCG+∠DBE=180°,
∴BE∥CG,
∵BC∥EG,
∴四边形BCGE是平行四边形,
∵BC=CD,
∴BE=BC,
∴四边形平行四边形BCGE是菱形.
10.证明:(1)∵CE平分∠BCD、CF平分∠GCD,
∴∠BCE=∠DCE,∠DCF=∠GCF
∵EF∥BC,
∴∠BCE=∠FEC,∠EFC=∠GCF,
∴∠DCE=∠FEC,∠EFC=∠DCF,
∴OE=OC,OF=OC,
∴OE=OF;
(2)∵点O为CD的中点,
∴OD=OC,
又OE=OF,
∴四边形DECF是平行四边形,
∵CE平分∠BCD、CF平分∠GCD,
∴,
∴,
即∠ECF=90°,
∴四边形DECF是矩形.(1分)
11.证明:如图,作EM⊥CD于M,HN⊥BC于N,
∵四边形ABCD是正方形,
∴∠B=∠C=90°,BC=AB,
∵EM⊥CD
∴四边形BCME是矩形,
∴EM=BC,
同理HN=AB,
∴EM=HN,
由题意可知FH⊥EG,EM⊥HN,
∴∠FHN+∠HOG=∠MEG+∠EON=90°,
∵∠EON=∠HOG,
∴∠FHN=∠MEG,
∴△HFN≌△EGM,
∴EG=HF;
小明的说法是正确的;
如图,在BC上找两个点F和F',使BF'=CF取AD的中点H,连接FH和F'H,
易证HF=HF',
作EG⊥HF',其中点E在AB上,点G在CD上,
由上题可知EG=F'H=FH,
但HF和EG不互相垂直,
小亮的猜想是错误的.
12.(1)证明:∵CE=AC,CF⊥AE,∴AF=EF
∵四边形ABCD是矩形,
∴AD=BC,∠ABC=∠BAD=90°
∴在Rt△ABE中,BF=AF,
∴∠FBA=∠FAB,
∴∠FAD=∠FBC,
∴△FBC≌△FAD;
(2)解:∵△FBC≌△FAD,∴FC=FD,∠BFC=∠AFD
∴∠BFD=∠BFC+∠CFD=∠AFD+∠CFD=90°
∵四边形ABCD是矩形,∴BD=AC=10,
∵,且BD=AC=10,∴FB=6,
在直角三角形BDF中,根据勾股定理得:FD=8,
∴FC=8.
13.证明:(1)由矩形ABCD,得∠B=∠C=90°,CD=AB,AD=BC,AD∥BC
由△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处,得△DFE≌△DCE
∴DF=DC,∠DFE=∠C=90°,
∴DF=AB,∠AFD=90°,
∴∠AFD=∠B,(2分)
由AD∥BC得∠DAF=∠AEB,
∴△ABE≌△DFA;
(2)由EC:BE=1:4,设CE=x,BE=4x,则AD=BC=5x,
由△ABE≌△DFA,得AF=BE=4x
在Rt△ADF中,由勾股定理可得DF=3x
又∵DF=CD=AB=6,
∴x=2
在Rt△DCE中,DE=.
14.解:(1)如:若AC⊥BD,AC平分线段BD,AD∥BC,则四边形ABCD是菱形.
证明:如图,设AC与BD交于上点O.
∵AC平分BD
∴BO=DO
∵AD∥BC,
∴∠ADO=∠CBO
在△AOD和△COB中,
∵,
∴△AOD≌△COB(ASA)
∴AO=CO
∴四边形ABCD是平行四边形
又∵AC⊥BD
∴四边形ABCD是菱形;
(2)如:若AC平分BD,AD∥BC,∠OAD=∠ODA,则四边形ABCD是菱形.
反例:如图,四边形ABCD为矩形.
15.证明:(1)∵四边形ABCD是菱形,
∴∠A=∠C,AB=BC=AD=CD,
∵点E、F分别为菱形ABCD边AD、CD的中点,
∴AE=AD,CF=CD,
∴AE=CF,
∴△ABE≌△CBF(SAS),
∴BE=BF;
(2)如图,连接AC、BD交于点O,设BD与EF交于G,AC与BE交于H,则AC⊥BD,
∵BE=BF,ED=DF,
∴BD是EF的垂直平分线,
∴EG=FG,∠EBG=∠EBF=30°,
Rt△BEG中,设EG=x,则BE=2x,BG=x,
∵EG∥AO,E为AD的中点,
∴G是OD的中点,
∴AO=2EG=2x,OB=x,
∵OH∥GE,
∴OH=,BH=x,
∴AH=AO﹣OH=2x﹣x=x,
∴AH=BH,
∴∠HAB=∠ABH,
∵∠BHC=∠HAB+∠ABH=60°,
∴∠HAB=30°,
∴∠DAB=60°,
∴∠ADC=120°,
∴∠ADC=2∠DAB,即∠D=2∠A.
16.解:(1)∵四边形ABCD为正方形,
∴BC=CD,∠BCG=∠DCE,
∵BF⊥DE,
∴∠E+∠CBG=∠E+∠EDC,
∴∠CBG=∠EDC,
在Rt△BCG与Rt△DCE中,
∴Rt△BCG≌Rt△DCE(ASA),
∴CG=CE.
(2)作CM⊥CF交BF于点M,
∵△BCG≌△DCE,
∴∠E=∠BGC,
∵∠MCG+∠FCG=∠ECF+∠FCG=90°,
∴∠MCG=∠FCE,
在△MCG和△FCE中,
,
∴△MCG≌△FCE(ASA),
∴MG=FE,MC=FC,
∴△MCF为等腰直角三角形,
∴∠BFC=45°.
(3)作CN⊥BF于点N,
∴△CNF为等腰直角三角形,CN=NF,
∵G为CD中点,正方形ABCD的边长为2,
∴CG=DG=CE=1,
∴BG=DE==,
∴BC CG=BG CN,
∴CN===,
在△CNG和△DFG中,
,
∴△CNG≌△DFG(AAS),
∴DF=CN=,
∴EF=DE﹣DF=﹣=.
17.证明:∵四边形ABCD是菱形,
∴DA=DC,∠ADE=∠CDE,
在△ADE和△CDE中,
,
∴△ADE≌△CDE(SAS),
∴∠DAE=∠DCE.
18.(1)证明:
∵正方形ABCD,
∴∠BCD=90°,BC=CD,
同理:CG=CE,
∠GCE=90°,
∴∠BCD=∠GCE=90°,
,
∴△BCG≌△DCE(SAS),
∴∠GBC=∠CDE,
在Rt△DCE中∠CDE+∠CED=90°,
∴∠GBC+∠BEH=90°,
∴∠BHE=180°﹣(∠GBC+∠BEH)=90°,
∴BH⊥DE;
(2)连接BD,
∵点H为DE中点,BH⊥DE,
∴BH为DE的垂直平分线,
∴BE=BD,
∵BC=CD=1,
∴BD==,
∴BE=BD=,
∵CE=BE﹣BC=﹣1,
∴CG=CE=﹣1.
19.证明:(1)∵E为BC中点,BD⊥DC,
∴DE=BC=BE=CE,
∵EA平分∠DEB,
∴∠AEB=∠AED,
∵AD∥BC,
∴AD∥CE,
∴∠DAE=∠AEB,AD∥CE,
∴∠DAE=∠AED,
∴AD=DE,
∴AD=CE,
∴四边形AECD平行四边形,
∴AE=DC;
(2)由(1)知,四边形AECD平行四边形,
∴AD∥CE,AD=CE,
∴AD∥BE,
由(1)知,DE=BE=CE,
∴AD=BE=DE,
∴四边形ABED是平行四边形,
∴四边形ABED是菱形.
20.解:(1)∵四边形ABCO是矩形,点B的坐标是(﹣6,8).
∴∠BAD=∠OCB=90°,AB=OC=6,OA=BC=8,
∴BO==10;
由折叠的性质得:BE=AB=6,∠BED=∠BAD=90°,DE=AD,
∴OE=BO﹣BE=10﹣6=4,∠OED=90°,
设D(0,a),则OD=a,DE=AD=OA﹣OD=8﹣a,
在Rt△EOD中,由勾股定理得:DE2+OE2=OD2,
即(8﹣a)2+42=a2,解得:a=5,
∴D(0,5);
(2)存在,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0);理由如下:
①当OM、OE都为菱形的边时,OM=OE=4,
∴M的坐标为(4,0)或(﹣4,0);
②当OM为菱形的边,OE为对角线时,MN垂直平分OE,垂足为G,如图1所示:
则OG=OE=2,
∵OA=8,OD=5,
∴AD=DE=3,
∴E到y轴的距离===,
∴OH=,
∵EM2﹣MH2=42﹣()2,
∴OM2﹣(OM﹣)2=42﹣()2,
解得:OM=,
∴M(﹣,0);
③当OM为菱形的对角线,OE为边时,如图2所示:
同②得:M(﹣,0);
综上所述,在x轴上存在点M,使以M、N、E、O为顶点的四边形是菱形,点M的坐标为(4,0)或(﹣4,0)或(﹣,0)或(﹣,0).