2022年湘教版数学八年级下册
2.4《三角形的中位线》课时练习
一、选择题
1.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC的周长是( )
A.8 B.10 C.12 D.14
2.如图,在 ABCD中,AD=16,点E,F分别是BD,CD的中点,则EF等于( )
A.10 B.8 C.6 D.4
3.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )
A.8 B.10 C.12 D.16
4.如图, ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为( )
A.3 cm B.6 cm C.9 cm D.12 cm
5.如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,
则△DEF周长为( )
A.9 B.10 C.11 D.12
6.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是( )
A.2OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE
7.在△ABC中,AB=10,AC=12,BC=9,AD是BC边上的高,将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为( )
A.9.5 B.10.5 C.11 D.15.5
8.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为( )
A.15 B.2 C.2.5 D.3
二、填空题
9.如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= .
10.如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,若△ABC的周长为12cm,则△DEF的周长是 cm.
11.如图,□ABCD的对角线AC,BD相交于点O,点E、F分别是线段AO、BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.
12.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,DE为△ABC的中位线,延长BC至F,使CF=BC,连接FE并延长交AB于点M.若BC=a,则△FMB的周长为 .
13.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,BG=5,则CF为 .
14.如图,在四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别在边AB,BC上,点E,F分别为MN,DN的中点,连接EF,则EF长度的最大值为 .
三、解答题
15.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24,△OAB的周长是18,试求EF的长.
16.如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.
17.如图,在△ABC中,点D、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.
18.如图,在四边形ABCD中,AB=CD,M、N、P分别是AD、BC、BD的中点,∠ABD=20°,∠BDC=70°,求∠PMN的度数.
参考答案
1.C.
2.B.
3.D.
4.B.
5.A
6.D;
7.D.
8.C
9.答案为:3.
10.答案为:6
11.答案为:3;
12.答案为:4.5a.
13.答案为:6.
14.答案为:3.
15.解:∵四边形ABCD是平行四边形
∴AO=CO,BO=DO,
∵AC+BD=24,
∴AO+BO=12,
∵△OAB的周长是18,
∴AB=18﹣(AO+BO)=18﹣12=6,
∵点E,F分别是线段AO,BO的中点
∴EF=3.
16.证明:∵∠BAC=90°,
∴∠DAF=90°,
∵点E,F分别是边BC,AC的中点,
∴AF=FC,BE=EC,FE是△ABC的中位线,
∴FE=AB,FE∥AB,
∴∠EFC=∠BAC=90°,
∴∠DAF=∠EFC,
∵AD=AB,
∴AD=FE,
在△ADF和△FEC中,
,
∴△ADF≌△FEC(SAS),
∴DF=EC,
∴DF=BE.
17.(1)证明略;(2)70°;
18.解:∵在四边形ABCD中,M、N、P分别是AD、BC、BD的中点,
∴PN,PM分别是△CDB与△DAB的中位线,∴PM=AB,PN=DC,PM∥AB,PN∥DC,
∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,
∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,
∴∠MPN=∠MPD+∠NPD=20°+°=130°,∴∠PMN==25°.