2022年湘教版数学八年级下册
4.1.2《函数的表示法》课时练习
一、选择题
1.汽车离开甲站10千米后,以60千米/时的速度匀速前进了t小时,则汽车离开甲站所走的路程s(千米)与时间t(小时)之间的关系式是( )
A.s=10+60t B.s=60t C.s=60t﹣10 D.s=10﹣60t
2.某种签字笔的单价为2元,购买这种签字笔x支的总价为y元.则y与x之间的函数关系式为( )
A.y=﹣x B.y= x C.y=﹣2x D.y=2x
3.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x与售价y如下表:
长度x/m 1 2 3 4 …
售价y/元 8+0.3 16+0.6 24+0.9 32+1.2 …
下列用长度x表示售价y的关系式中,正确的是( )
A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x
4.已知函数y=则当x=2时,函数y的值为( )
A.5 B.6 C.7 D.8
5.一个正方形的边长为3 cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,y与x的关系式可以写为( )
A.y=12-4x B.y=4x-12 C.y=12-x D.以上都不对
6.如图,图象记录了某地一月份某天的温度随时间变化的情况,请你仔细观察图象,根据图中提供的信息,判断不符合图象描述的说法是( )
A.20时的温度约为-1℃
B.温度是2℃的时刻是12时
C.最暖和的时刻是14时
D.在-3℃以下的时间约为8小时
7.一辆行驶中的汽车在某一分钟内速度的变化情况如下图,下列说法正确的是( )
A.在这一分钟内,汽车先提速,然后保持一定的速度行驶
B.在这一分钟内,汽车先提速,然后又减速,最后又不断提速
C.在这一分钟内,汽车经过了两次提速和两次减速
D.在这一分钟内,前40s速度不断变化,后20s速度基本保持不变
8.在体育测试女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s(米)与所用时间t(秒)之间的图象分别为线段OA和折线OBCD.下列说法正确的是( )
A.小莹的速度随时间的增大而增大
B.小梅的平均速度比小莹的平均速度大
C.在起跑后180秒时,两人相遇
D.在起跑后50 秒时,小梅在小莹的前面
二、填空题
9.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x分钟后水壶的水温为y℃,当水开时就不再烧了.
(1)y与x的关系式为________,其中自变量是________,它应在________变化.
(2)x=1时,y=________,x=5时,y=________.
(3)x=________时,y=48.
10.弹簧挂上物体后会伸长,测得﹣弹簧的长度y(cm)与所挂重物的质量x(㎏)有下面的关系:那么弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为 .
11.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)与x(件)的函数表达式是 .
12.某商店出售茶杯,茶杯的个数与钱数之间的关系,如图所示,由图可得每个茶杯_______元.
13.小华粉刷他的卧室共花去10小时,他记录的完成工作量的百分数如下:
(1)5小时他完成工作量的百分数是 ;
(2)小华在 时间里工作量最大;
(3)如果小华在早晨8时开始工作,则他在 时间没有工作。
14.小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:
(1)小明家离超市的距离是 千米;
(2)小明在超市买东西时间为 小时;
(3)小明去超市时的速度是 千米/小时.
三、解答题
15.多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N,则变量N与n之间的关系可以表示为N=(n-2)·180°.
(1)在这个关系式中,自变量、因变量各是什么
(2)在这个关系式中,n能取什么样的值
(3)利用这个关系式计算六边形的内角和.
(4)当边数每增加1时,多边形的内角和如何变化
16.用一根长是20cm的细绳围成一个长方形(如图),这个长方形的一边的长为xcm,它的面积为ycm2.
(1)写出y与x之间的关系式,在这个关系式中,哪个是自变量?它的取值应在什么范围内?
(2)用表格表示当x从1变到9时(每次增加1),y的相应值;
(3)从上面的表格中,你能看出什么规律
(4)猜想一下,怎样围法,得到的长方形的面积最大?最大是多少
17.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:
汽车行驶时间t(h) 0 1 2 3 …
油箱剩余油量Q(L) 100 94 88 82 …
①根据上表的数据,请你写出Q与t的关系式;
②汽车行驶5h后,油箱中的剩余油量是多少?
③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远?
18.小明、爸爸、爷爷同时从家里出发到达同一目的地后立即返回,小明去时骑自行车,返回时步行;爷爷去时是步行,返回时骑自行车;爸爸往返都是步行.三人步行速度不等,小明和爷爷骑自行车的速度相等,每个人的行走路程与时间的关系用如图三个图象表示.根据图象回答下列问题:
(1)三个图象中哪个对应小明、爸爸、爷爷?
(2)家距离目的地多远?
(3)小明与爷爷骑自行车的速度是多少?爸爸步行的速度是多少?
参考答案
1.答案为:A
2.答案为:D
3.答案为:B
4.答案为:A.
5.答案为:A
6.答案为:B
7.答案为:D
8.答案为:D
9.答案为:(1)y=8x+20 x 在0--10变化;(2)28 60;(3)3.5
10.答案为:y=0.5x+12.
11.答案为:y=3.5x
12.答案为:2.
13.答案为:50%;第二小时;12~13小时。
14.答案为:3,1,15.
15.解:(1)n是自变量,N是因变量.
(2)大于2的整数.
(3)720°.
(4)增加180°.
16.解:(1)y=10-x)·x,x是自变量,它的值应在0到10之间(不包括0和10)
(2)如下表:
x 1 2 3 4 5 6 7 8 9 10
y 9 16 21 24 25 24 21 16 9
(3)可以看出:①当x逐渐增大时,y的值先由小变大,后又由大变小;②y的值在由小变大的过程中,变大的速度越来越慢,反过来y的值在由大变小的过程中,变小的速度越来越快;③当x取距5等距离的两数时,得到的两个y值相等.
(4)从表中可以发现x=5时,y取到最大的值25.
17.解:(1)Q=50﹣8t;
(2)当t=5时,Q=50﹣8×5=10,
答:汽车行驶5h后,油箱中的剩余油量是10L;
(3)当Q=0时,0=50﹣8t,8t=50,解得:t=6.25,
100×6.25=625km.
答:该车最多能行驶625km.
18.解:(1)由图象可以看出,A对应爷爷,去时耗时长;B对应爸爸,去时和返回时耗时一样;C对应小明,去时用时短返回用时长.
(2)从图象可以看出,家距离目的地1 200 m.
(3)小明与爷爷骑自行车的速度是1 200÷6=200 (m/min),
爸爸步行的速度是1 200÷12=100 (m/min).