2021-2022学年青岛版数学八年级下册6.4三角形的中位线定理课时练习(Word版含答案)

文档属性

名称 2021-2022学年青岛版数学八年级下册6.4三角形的中位线定理课时练习(Word版含答案)
格式 docx
文件大小 160.2KB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2022-02-08 11:56:35

图片预览

文档简介

2022年青岛版数学八年级下册
6.4《三角形的中位线定理》课时练习
一、选择题
1.如图,已知四边形ABCD是平行四边形,对角线AC,BD相交于点O,E是BC的中点,以下说法错误的是(   )
A.2OE=DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE
2.如图,在 ABCD中,AD=16,点E,F分别是BD,CD的中点,则EF等于(  )
A.10 B.8 C.6 D.4
3.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )
A.8 B.10 C.12 D.16
4.如图, ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为(  )
A.3 cm B.6 cm C.9 cm D.12 cm
5.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为(  )
A.4.8 B.3.6 C.2.4 D.1.2
6.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )
A.0.5 B.1 C.3.5 D.7
7.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为( )
A.15 B.2 C.2.5 D.3
8.如图,四边形ABCD,AD与BC不平行,AB=CD.AC,BD为四边形ABCD的对角线,E,F,G,H分别是BD,BC,AC,AD的中点.下列结论:①EG⊥FH;②四边形EFGH是矩形;③HF平分∠EHG;
④EG=(BC﹣AD);⑤四边形EFGH是菱形.其中正确的个数是( )
A.1个 B.2个 C.3个 D.4个
二、填空题
9.如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,若△ABC的周长为12cm,则△DEF的周长是      cm.
10.如图,□ABCD的对角线AC,BD相交于点O,点E、F分别是线段AO、BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.
11.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加 条件,才能保证四边形EFGH是矩形.
12.如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于 点F,E为BC的中点,则DE的长为 cm;
13.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是 .
14.如图,已知等边三角形ABC边长为1,△ABC的三条中位线组成△A1B1C1,△A1B1C1的三条中位线组成△A2B2C2,依此进行下去得到△A5B5C5的周长为   .
三、解答题
15.如图,在□ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.
16.如图,已知:在△ABC中,∠BAC=90°,延长BA到点D,使AD=AB,点E,F分别是边BC,AC的中点.求证:DF=BE.
17.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.
(1)求证:四边形BDEF是菱形;
(2)若AB=12cm,求菱形BDEF的周长.
18.如图所示,在△ABC中,D是边BC的中点,点E在△ABC内,AE平分∠BAC,CE⊥AE,点F在边AB上,EF∥BC.
(1)求证:四边形BDEF是平行四边形.
(2)线段BF,AB,AC的数量之间具有怎样的关系?证明你所得到的结论.
参考答案
1.D;
2.B.
3.D.
4.B.
5.C
6.A
7.C
8.C
9.答案为:6
10.答案为:3;
11.答案为:AC⊥BD
12.答案为:2;
13.答案为:11.
14.答案为:.
15.证明:∵四边形ABCD是平行四边形,
∴点O是BD的中点.
又∵点E是边CD的中点,
∴OE是△BCD的中位线.
∴OE∥BC,且OE=BC.
又∵CF=BC,
∴OE=CF.
又∵点F在BC的延长线上,
∴OE∥CF.
∴四边形OCFE是平行四边形.
16.证明:
∵∠BAC=90°,
∴∠DAF=90°,
∵点E,F分别是边BC,AC的中点,
∴AF=FC,BE=EC,FE是△ABC的中位线,
∴FE=AB,FE∥AB,
∴∠EFC=∠BAC=90°,
∴∠DAF=∠EFC,
∵AD=AB,
∴AD=FE,
在△ADF和△FEC中,

∴△ADF≌△FEC(SAS),
∴DF=EC,
∴DF=BE.
17.(1)证明:∵D、E、F分别是BC、AC、AB的中点,
∴DE∥AB,EF∥BC,
∴四边形BDEF是平行四边形,
又∵DE=AB,EF=BC,且AB=BC,
∴DE=EF,
∴四边形BDEF是菱形;
(2)解:∵AB=12cm,F为AB中点,
∴BF=6cm,
∴菱形BDEF的周长为6×4=24cm.
18.解:(1)证明:延长CE交AB于点G,
∵AE⊥CE,∴∠AEG=∠AEC=90°.
在△AGE和△ACE中,
∵∠GAE=∠CAE,AE=AE,∠AEG=∠AEC
∴△AGE≌△ACE(ASA).∴GE=EC.
∵BD=CD,∴DE为△CGB的中位线,
∴DE∥AB.
∵EF∥BC,∴四边形BDEF是平行四边形.
(2)解:BF=0.5(AB-AC).证明如下:
∵四边形BDEF是平行四边形,∴BF=DE.
∵D,E分别是BC,GC的中点,
∴BF=DE=0.5BG.
∵△AGE≌△ACE,∴AG=AC,
∴BF=0.5(AB-AG)=0.5(AB-AC).