2021-2022学年青岛版数学八年级下册11.2图形的旋转课时练习(Word版含答案)

文档属性

名称 2021-2022学年青岛版数学八年级下册11.2图形的旋转课时练习(Word版含答案)
格式 docx
文件大小 153.6KB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2022-02-08 12:50:54

图片预览

文档简介

2022年青岛版数学八年级下册
11.2《图形的旋转》课时练习
一、选择题
1.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,
则∠AOB′的度数是(  )
A.25° B.30° C.35° D.40°
2.如图,将△ABC绕点C顺时针方向旋转40°,得△A′B′C.若AC⊥A′B′,则∠A等于( )
A.50° B.60° C.70° D.80°
3.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是(  )
A.(1,1) B.(1,2) C.(1,3) D.(1,4)
4.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )
A.120° B.90° C.60° D.30°
5.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是( )
A.55° B.60° C.65° D.70°
6.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的是( )
A.∠BCB′=∠ACA′ B.∠ACB=2∠B
C.∠B′CA=∠B′AC D.B′C平分∠BB′A′
7.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是( )
A.(5,0) B.(8,0) C.(0,5) D.(0,8)
8.如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )
A.(0,﹣2) B.(1,﹣) C.(2,0) D.( ,﹣1)
二、填空题
9.如图,在△ABC中,AB=4,BC=7,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为   .
10.如图,在等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:.将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=_________ .
11.如图,P为正方形ABCD内的一点,PC=1,将△CDP绕点C逆时针旋转得到△CBE,则PE=   .
12.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△MAB,则点P与点M之间的距离为 ,∠APB= °.
13.如图,已知在平面上将△ABC绕B点旋转到△A′BC′的位置时,AA′∥BC,∠ABC=70°,则∠CBC′为 度.
14.如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O经过4次旋转而得到,则每一次旋转的角度大小为 .
三、解答题
15.如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180° 得到△DEC.
(1)试猜想AE与BD有何关系?并且直接写出答案.
(2)若△ABC的面积为4cm2,求四边形ABDE的面积;
(3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.
16.如图所示,已知P为正方形ABCD外的一点.PA=1,PB=2.将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,求∠BP′C的度数.
17.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
18.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.
(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.
参考答案
1.答案为:B
2.答案为:A
3.答案为:B.
4.答案为:A
5.答案为:C.
6.答案为:C.
7.答案为:B.
8.答案为:D.
9.答案为:3
10.答案为:105°
11.答案为:.
12.答案为6,150.
13.答案为:40°.
14.答案为:72
15.解:(1)AE∥BD,且AE=BD;
(2)四边形ABDE的面积是:4×4=16;
(3)AC=BC.理由是:∵AC=CD,BC=CE,
∴四边形ABDE是平行四边形.
∵AC=BC,
∴平行四边形ABDE是矩形.
16.解:连接PP′,
∵△ABP绕点B顺时针旋转90°,使点P旋转至点P′,
∴P′B=PB=2,∠PBP′=90°,
∴PP′==2,∠BPP′=45°,
∵PA=1,AP′=3,
∴PA2+PP′2=AP′2,
∴∠APP′=90°,
∴∠APB=∠APP′+∠BPP′=135°,
∴∠BP′C=∠APB=135°.
17.解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,
∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;
(2)四边形ACFD是菱形;
理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,
∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,
∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.
18.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
∵AB⊥BC,
∴∠ABC=90°,
∴∠DBE=∠CBE=30°,
在△BDE和△BCE中,
∵,
∴△BDE≌△BCE(SAS);
(2)四边形ABED为菱形;
由(1)得△BDE≌△BCE,
∵△BAD是由△BEC旋转而得,
∴△BAD≌△BEC,
∴BA=BE,AD=EC=ED,
又∵BE=CE,
∴四边形ABED为菱形.