2021-2022学年鲁教版八年级数学下册《6-2矩形的性质与判定》自主提升训练(附答案)
1.如图,矩形ABCD中,AB=12,点E是AD上的一点,AE=6,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G,若G是CD的中点,则BC的长是( )
A.12.5 B.12 C.10 D.10.5
2.如图,矩形ABCD中,点G是AD的中点,GE⊥BG交CD于点E,CB=CE,连接CG交BE于点F,则∠ECF的度数为( )
A.30° B.22.5° C.25° D.15°
3.如图,在矩形ABCD中,E是AB的中点,动点F从点B出发,沿BC运动到点C时停止,以EF为边作 EFGH,且点G、H分别在CD、AD上.在动点F运动的过程中, EFGH的面积( )
A.逐渐增大 B.逐渐减小 C.不变 D.先增大,再减小
4.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB上以2cm/s的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是( )
A.2或 B.6或 C.2或6 D.1或
5.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,点B的横坐标为,则矩形AOBC的面积为( )
A. B.5 C. D.3
6.如图,在矩形ABCD中,AB=2,AD=1,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是( )
A.2 B.4 C. D.2
7.如图,P点为矩形ABCD两对角线的交点,将P点分别以AD、BC为对称轴画出对称点Q、R,形成六边形QABRCD.若AB=2,AD=4,则六边形QABRCD的周长为何?( )
A.12 B.4+2 C.4+4 D.4+4
8.如图,要使 ABCD为矩形,则可以添加的条件是( )
A.AC⊥BD B.AC=BD C.∠AOB=60° D.AB=BC
9.下列说法中,正确的是( )
A.当x≠﹣1时,有意义
B.对角线相等的四边形是矩形
C.三角形三边垂直平分线的交点到三个顶点的距离相等
D.若a<b,则m2a<m2b一定成立
10.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.CE⊥DE C.∠ADB=90° D.BE⊥DC
11.如图,在矩形ABCD中,点P为CB延长线上一点,连接AP.
(1)如图1,以CD为底向内作等腰△CDE,延长DE恰好交CB延长线于点P,交AB于点F,若AF=5BF,EC=6,求EF的长;
(2)如图2,若∠APB=60°,AB=AD,以CD为边向外作等边△CDF,连接AF,DE平分∠ADC交AF于点E,连接PE.求证:PA+PC=PE.
12.已知:如图,在矩形ABCD中,E是BC上一点,且AE=AD,DF⊥AE于点F.
(1)求证:CE=FE;
(2)若FD=5,CE=1,求矩形的面积.
13.如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H.
(1)求证:HE=HG;
(2)如图2,当BE=AB时,过点A作AP⊥DE于点P,连接BP,求的值;
14.如图,在矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.
(1)若△PCD是等腰三角形时,求AP的长;
(2)求证:PC⊥CF.
15.如图,E是矩形ABCD边AD上一点,BE⊥CE,延长CD至F使CF=AD,连接FE并延长交BC于点G.
(1)若BE=4,CE=3,求EF的长;
(2)若EG平分∠BEC,求证:点C到FG的距离为BE.
16.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.
(1)求证:OE=OF;
(2)若点O为CD的中点,求证:四边形DECF是矩形.
17.如图,将 ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.
(1)求证:四边形BECD是平行四边形;
(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.
18.如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.
(1)求证:四边形ABCD是矩形;
(2)以OA、OB为一组邻边作 AOBE,连接CE,若CE⊥BD,求∠AOB的度数.
19.已知:如图,点E为 ABCD对角线AC上的一点,点F在线段BE的延长线上,且EF=BE,线段EF与边CD相交于点G.
(1)求证:DF∥AC;
(2)如果AB=BE,DG=CG,联结DE、CF,求证:四边形DECF是矩形.
20.如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.
(1)当t为何值时,四边形ABQP是矩形;
(2)当t为何值时,四边形AQCP是菱形;
(3)分别求出(2)中菱形AQCP的周长和面积.
参考答案
1.解:∵矩形ABCD中,G是CD的中点,AB=12,
∴CG=DG=×12=6,
在△DEG和△CFG中,
,
∴△DEG≌△CFG(ASA),
∴DE=CF,EG=FG,
设DE=x,
则BF=BC+CF=AD+CF=6+x+x=6+2x,
在Rt△DEG中,EG==,
∴EF=2,
∵FH垂直平分BE,
∴BF=EF,
∴6+2x=2,
解得x=4.5,
∴AD=AE+DE=6+4.5=10.5,
∴BC=AD=10.5.
故选:D.
2.解:取BE的中点O,连接OG,OC,
∵O,G为中点,
∴OG为四边形ADEB的中位线,
∴AB∥OG∥DE,
∴∠OGC=∠ECF,
∵CE=BC,∠BCE=90°,
∴△BCE是等腰直角三角形,
∴∠CBE=∠BEC=45°,
∵∠BCE=90°,O为BE的中点,
∴OC=OE=BE,
∴∠OCE=∠OEC=45°,
∵GE⊥BG,O为BE的中点,
∴OG=BE,
∴OG=OC,
∴∠OGC=∠OCG,
∴∠OCG=∠ECF=∠OCE=22.5°,
故选:B.
3.解:设AB=a,BC=b,BE=c,BF=x,
连接EG,
∵四边形EFGH为平行四边形,
∴EF=HG,EF∥HG,
∴∠FEG=∠HGE,
∵四边形ABCD为矩形,
∴AB∥CD,
∴∠BEG=∠DGE,
∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,
∴∠BEF=∠HGD
∵EF=HG,∠B=∠D,
∴Rt△BEF≌Rt△DGH(AAS),
同理Rt△AEH≌Rt△CGF,
∴S平行四边形EFGH=S矩形ABCD﹣2(S△BEF+S△AEH)
=ab﹣2[cx+(a﹣c)(b﹣x)]
=ab﹣(cx+ab﹣ax﹣bc+cx)
=ab﹣cx﹣ab+ax+bc﹣cx
=(a﹣2c)x+bc,
∵E是AB的中点,
∴a=2c,
∴a﹣2c=0,
∴S平行四边形EFGH=bc=ab,
方法二:连接EG,
∵四边形EFGH为平行四边形,
∴EF=HG,EF∥HG,
∴∠FEG=∠HGE,
∵四边形ABCD为矩形,
∴AB∥CD,
∴∠BEG=∠DGE,
∴∠BEG﹣∠FEG=∠DGE﹣∠EGH,
∴∠BEF=∠HGD
∵EF=HG,∠B=∠D,
∴Rt△BEF≌Rt△DGH(AAS),
∴DG=BE=CD=AE,
∴四边形AEGD为平行四边形,
∵∠A=90°,
∴ AEGD为矩形,
同理四边形EBCG为矩形,
∴S平行四边形EFGH=S△EHG+S△EFG=EG DG+EG GC=EG DG=EG CD=S矩形ABCD.
故选:C.
4.解:∵长方形ABCD,
∴∠A=∠B=90°,
∵点E为AD的中点,AD=8cm,
∴AE=4cm,
设点Q的运动速度为xcm/s,
①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,
,
解得,,
即点Q的运动速度cm/s时能使两三角形全等.
②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,
,
解得:,
即点Q的运动速度6cm/s时能使两三角形全等.
综上所述,点Q的运动速度或6cm/s时能使两三角形全等.
故选:B.
5.解:如图,过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴交x轴于点H,过点A作AF∥x轴,交点为F,
则AF⊥CF,得矩形ADHF,延长CA交x轴于点G,
∴HF=AD,AF=HD,
∵点A的坐标是(﹣2,1),点C的纵坐标是4,点B的横坐标为,
∴OD=2,AD=1,CH=4,OE=,
∵四边形AOBC是矩形,
∴OB=AC,AC∥OB,
∴∠CAF=∠CGO=∠BOE,
∵∠AFC=∠OEB=90°,
∴△AFC≌△OEB(AAS),
∴CF=BE,AF=OE=,
∵HF=AD=1,HC=4,
∴CF=BE=CH﹣HF=3,
OH=OD﹣DH=OD﹣AF=2﹣=,
∴HE=OH+OE=+=2,
∴矩形AOBC的面积为:
S梯形BCHE+S梯形ADHC﹣S△BEO﹣S△ADO
=(BE+CH)×EH+(AD+CH)×DH﹣×OE BE﹣AD OD
=(3+4)×2+(1+4)×﹣×3﹣1×2
=4+﹣﹣1
=.
故选:A.
6.解:如图:
当点F与点C重合时,点P在P1处,CP1=DP1,
当点F与点E重合时,点P在P2处,EP2=DP2,
∴P1P2∥CE且P1P2=CE.
当点F在EC上除点C、E的位置处时,有DP=FP.
由中位线定理可知:P1P∥CE且P1P=CF.
∴点P的运动轨迹是线段P1P2,
∴当BP⊥P1P2时,PB取得最小值.
∵矩形ABCD中,AB=2,AD=1,E为AB的中点,
∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=1.
∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°.
∴∠DP2P1=90°.
∴∠DP1P2=45°.
∴∠P2P1B=90°,即BP1⊥P1P2,
∴BP的最小值为BP1的长.
在等腰直角BCP1中,CP1=BC=1.
∴BP1=.
∴PB的最小值是.
故选:C.
7.解:如图,连接PQ交AD于点E,
根据题意可知:
QP和AD互相垂直平分,
∴AE=DE=2,PE=QE=1,AQ=DQ,
∴AQ==,
∴AQ=DQ=,
同理可得,BR=CR=,
则六边形QABRCD的周长为4AQ+2AB=4+4.
故选:D.
8.解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,
故选:B.
9.解:A、∵当x>﹣1时,有意义,
∴选项A不符合题意;
B、∵对角线相等的平行四边形是矩形,
∴选项B不符合题意;
C、∵三角形三边垂直平分线的交点到三个顶点的距离相等,
∴选项C符合题意;
D、∵0<a<b,
若m=0时,则m2a=m2b,
∴选项D不符合题意;
故选:C.
10.解:∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴ DBCE为矩形,故本选项不符合题意;
B、∵CE⊥DE,
∴∠CED=90°,
∴ DBCE为矩形,故本选项不符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴ DBCE为矩形,故本选项不符合题意;
D、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项符合题意;
故选:D.
11.(1)解:∵CE=DE,
∴∠ECD=∠EDC,
∵∠DPC+∠PDC=90°,
∠ECP+∠ECD=90°,
∴∠EPC=∠ECP,
∴PE=CE=6,
∴PD=12,
∵PB∥AD,
∴,
∴PF=2,DF=10,
∴EF=4;
(2)证明:连接CE,
∵四边形ABCD是矩形,AB=AD,
∴四边形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∵△CDF是等边三角形,
∴∠CDF=60°,AD=DF,
∴∠DAF=15°,
∵DE平分∠ADC,
∴∠ADE=∠CDE=45°,
∴∠AED=120°,
又∵DE=DE,
在△ADE和△CDE中,
,
△ADE≌△CDE(SAS),
∴∠AED=∠CED=∠AEC=120°,AE=CE,
∵∠APB=60°,
∴∠APB+∠AEC=120°,
∴点A、P、C、E四点共圆,
∴∠APE=∠EPC=30°,
∴∠PEC=∠PCE=75°,
∴PE=PC,
设PB=a,则PA=2a,AB=BC=,
∴PA+PC=2a+a+=()=(BC+PB)=PC,
∴PA+PC=PE.
12.解:(1)连结DE,如图,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DAF=∠AEB,
∵DF⊥AE,
∴∠AFD=∠B=90°,
在△ABE和△DFA中,
,
△ABE≌△DFA(AAS),
∴AB=CD=DF,
在Rt△DFE和Rt△DCE中,
,
∴Rt△DFE≌Rt△DCE(HL).
∴CE=FE.
(2)∵△DEF≌△DEC,
∴FE=CE=1,DC=DF=5,
设AD=x,
则AF=AE﹣EF=AD﹣1=x﹣1,
在Rt△AFD中,由勾股定理得:AF2+DF2=AD2,
∴(x﹣1)2+52=x2,
∴x=13,
即AD=13,
∴S矩形ABCD=AD DC=65.
13.(1)证明:连接AG,并延长AG交DC的延长线于M,连接EM,
∵G为BC的中点,
∴BG=CG,
∵四边形ABCD是矩形,
∴∠ABG=∠DCB=90°,
∴∠ABG=∠MCG=90°,
在△ABG和△MCG中,
,
∴△ABG≌△MCG(ASA),
∴GA=GM,
∵F为AE的中点,
∴FA=FE,
∴FG是△AEM的中位线,
∴FG∥EM,
∴∠HGE=∠MEC,
在△DCE和△MCE中,
,
∴△DEC≌△MEC(SAS),
∴∠DEC=∠MEC,
∵∠HGE=∠MEC,
∴∠HEG=∠HGE,
∴HE=HG;
(2)过点B作BQ⊥BP交DE于Q,则∠QBP=90°,
∵AP⊥DE,四边形ABCD是矩形,
∴∠APE=∠ABE=90°,
∵∠APO+∠AOP+∠BAP=180°,∠EOB+∠ABE+∠BEP=180°,∠AOP=∠EOB,
∴∠BEQ=∠BAP,
∵∠QBP=∠ABE=90°,
∴∠EBQ=∠ABP=90°﹣∠ABQ,
在△ABP和△EBQ中,
,
∴△BEQ≌△BAP(ASA),
∴BQ=BP,PA=QE,
∴△PBQ是等腰直角三角形,
∴PQ=PB,
∴===.
14.解:(1)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,
∴DC=AB=6,
∴AC==10,
要使△PCD是等腰三角形,
①当CP=CD时,AP=AC﹣CP=10﹣6=4,
②当PD=PC时,∠PDC=∠PCD,
∵∠PCD+∠PAD=∠PDC+∠PDA=90°,
∴∠PAD=∠PDA,
∴PD=PA,
∴PA=PC,
∴AP=AC=5,
③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,
∵S△ADC=AD DC=AC DQ,
∴DQ=,
∴CQ=,
∴PC=2CQ=,
∴AP=AC﹣PC=10﹣=;
所以,若△PCD是等腰三角形时,AP=4或5或;
(2)如图2,连接PF,DE,记PF与DE的交点为O,连接OC,
∵四边形ABCD和PEFD是矩形,
∴∠ADC=∠PDF=90°,
∴∠ADP+∠PDC=∠PDC+∠CDF,
∴∠ADP=∠CDF,
∵∠BCD=90°,OE=OD,
∴OC=ED,
在矩形PEFD中,PF=DE,
∴OC=PF,
∵OP=OF=PF,
∴OC=OP=OF,
∴∠OCF=∠OFC,∠OCP=∠OPC,
∵∠OPC+∠OFC+∠PCF=180°,
∴2∠OCP+2∠OCF=180°,
∴∠PCF=90°,
∴PC⊥CF.
15.(1)解:∵BE⊥CE,BE=4,CE=3,
∴BC==5,
在矩形ABCD中,AD=BC=5,
∴CF=AD=5,
如图,过点E作EH⊥BC于点H,
则EH=,BH=,
∴AE=BH=,CD=EH=,
∴DE=AD﹣AE=5﹣=,DF=CF﹣CD=5﹣=,
∴EF===,
答:EF的长为;
(2)证明:如图,连接FB,
∵BC=CF=AD,
∴∠CBF=∠CFB=45°,
∴∠EFB+∠EFC=45°,
∵EG平分∠BEC,
∴∠BEG=∠CEG=BEC=45°,
∴∠EFB+∠EBF=45°,
∴∠EBF=∠EFC,
同理:∠ECF=∠EFB,
∴BE=EF=×EC=2EC,
如图,作CM⊥FG于点M,
∵∠CEM=45°,
∴EC=CM,
∴BE=2EC=2CM,
∴CM=BE,
答:点C到FG的距离为BE.
16.证明:
(1)∵CE平分∠BCD、CF平分∠GCD,
∴∠BCE=∠DCE,∠DCF=∠GCF,
∵EF∥BC,
∴∠BCE=∠FEC,∠EFC=∠GCF,
∴∠DCE=∠FEC,∠EFC=∠DCF,
∴OE=OC,OF=OC,
∴OE=OF;
(2)∵点O为CD的中点,
∴OD=OC,
又OE=OF,
∴四边形DECF是平行四边形,
∵CE平分∠BCD、CF平分∠GCD,
∴∠DCE=∠BCD,∠DCF=∠DCG
∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,
即∠ECF=90°,
∴四边形DECF是矩形.
17.(1)证明:∵四边形ABCD是平行四边形
∴AB=CD,AB∥CD,
又∵AB=BE,
∴BE=DC,
又∵AE∥CD,
∴四边形BECD为平行四边形;
(2)证明:由(1)知,四边形BECD为平行四边形
∴OD=OE,OC=OB,
∵四边形ABCD为平行四边形,
∴∠A=∠BCD
又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,
∴∠OCD=∠ODC,
∴OC=OD,
∴OC+OB=OD+OE,即BC=ED,
∴平行四边形BECD为矩形.
18.(1)证明:∵OC=AO,OD=BO,
∴四边形ABCD是平行四边形,
∴AO=AC,BO=BD,
∵AO=BO,
∴AC=BD,
∴四边形ABCD是矩形;
(2)解:连接OE,设EC与BD交于F,
∵EC⊥BD,
∴∠CFD=90°,
∵四边形AEBO是平行四边形,
∴AE∥BO,
∴∠AEC=∠CFD=90°,
即△AEC是直角三角形,
∵EO是Rt△AEC中AC边上的中线,
∴EO=AO,
∵四边形AEBO是平行四边形,
∴OB=AE,
∵OA=OB,
∴AE=OA=OE,
∴△AEO是等边三角形,
∴∠OAE=60°,
∵∠OAE+∠AOB=180°,
∴∠AOB=120°.
19.(1)证明:∵四边形ABCD是平行四边形,
∴BO=DO,
∵EF=BE,
∴OE是△BDF的中位线,
∴OE∥DF,
即DF∥AC;
(2)解:∵AB=BE,
∴∠BAE=∠BEA,
∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠BAE=∠GCE,
∵∠BEA=∠GEC,
∴∠GEC=∠GCE,
∴GE=CG,
∵DF∥AC,
∴=,
∵DG=CG,
∴FG=GE,
∴四边形DECF是平行四边形,
∵DG=CG,FG=GE,GE=CG,
∴DG=CG=FG=GE,
∴DC=EF,
∴四边形DECF是矩形.
20.解:(1)由已知可得,BQ=DP=t,AP=CQ=6﹣t
在矩形ABCD中,∠B=90°,AD∥BC,
当BQ=AP时,四边形ABQP为矩形,
∴t=6﹣t,得t=3
故当t=3时,四边形ABQP为矩形.
(2)由(1)可知,四边形AQCP为平行四边形
∴当AQ=CQ时,四边形AQCP为菱形
即时,四边形AQCP为菱形,解得t=,
故当t=s时,四边形AQCP为菱形.
(3)当t=时,AQ=,CQ=,
则周长为:4AQ=4×=15cm
面积为:(cm2).