(共18张PPT)
第16章 分式
华师版 八年级下
16.4零指数幂与负整数指数幂
同底数幂相除,底数不变,指数相减.
即
问题 同底数幂的除法法则是什么?
回顾与思考
若m≤n时同底数幂的除法怎么计算呢?该法则还适用吗?
新课导入
新课讲授
先考察被除数的指数等于除数的指数的情况.例如考察下列算式:
52÷52,103÷103,a5÷a5(a≠0).
一方面,如果仿照同底数幂的除法公式来计算,得
52÷52=52-2=50, 103÷103=103-3=100,
a5÷a5=a5-5=a0(a≠0).
另一方面,由于这几个式子的被除式等于除式,由除法的意义可知,所得的商都等于1.
如果把公式 (a≠0,m,n都是正整数,且m>n)推广到 m=n 的情形,那么就会有
这启发我们规定
即任何不等于零的数的零次幂都等于1.
新知归纳
例1 已知(3x-2)0有意义,则x应满足的条件是________.
解析:根据零次幂的意义可知:(3x-2)0有意义,则3x-2≠0, .
方法总结:零次幂有意义的条件是底数不等于0,所以解决有关零次幂的意义类型的题目时,可列出关于底数不等于0的式子求解即可.
新课讲授
例2:若(x-1)x+1=1,求x的值.
解:①当x+1=0,即x=-1时,原式=(-2)0=1;
②当x-1=1,x=2时,原式=13=1;
③x-1=-1,x=0时,0+1=1不是偶数.故舍去.
故x=-1或2.
方法总结:乘方的结果为1,可分为三种情况:不为零的数的零次幂等于1;1的任何次幂都等于1;-1的偶次幂等于1,即在底数不等于0的情况下考虑指数等于0;考虑底数等于1或-1.
新课讲授
问题:计算:a3 ÷a5= (a ≠0)
解法1
解法2 再假设正整数指数幂的运算性质am÷an=am-n
(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么a3÷a5=a3-5=a-2.
于是得到:
新课讲授
由于
因此
特别地,
如果在公式 中m=0,那么就会有
新课讲授
例3 计算:
解:
例题精析
例4
A.a>b=c B.a>c>b
C.c>a>b D.b>c>a
B
方法总结:关键是理解负整数指数幂的意义,依次计算出结果.当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.
例题精析
例5 把下列各式写成分式的形式:
解:
例题精析
例6
解析:分别根据有理数的乘方、0指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.
例题精析
1.计算:
1
1
64
课堂练习
2.把下列各式写成分式的形式:
3.比较大小:
(1)3.01×10-4_______9.5×10-3
(2)3.01×10-4________3.10×10-4
<
<
课堂练习
4.计算:-22+(- )-2+(2016-π)0-|2- π|.
解:-22+(- )-2+(2016-π)0-|2- π|
=-4+4+1-2+ π
= π-1.
课堂练习
整数
指数幂
1.零指数幂:当a≠0时,a0=1.
2.负整数指数幂:当n是正整数时,a-n=
整数指数幂的运算性质:
(1)am·an=am+n(m,n为整数,a≠0)
(2)(ab)m=ambm(m为整数,a≠0,b≠0)
(3)(am)n=amn(m,n为整数,a≠0)
课堂小结
https://www.21cnjy.com/help/help_extract.php