《第1章三角形的证明》单元测试题-北师大版八年级数学下册(含答案) (1)

文档属性

名称 《第1章三角形的证明》单元测试题-北师大版八年级数学下册(含答案) (1)
格式 docx
文件大小 210.7KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-02-09 11:33:31

图片预览

文档简介

北师大版八年级数学下册《第1章三角形的证明》
单元测试题(附答案)
一.选择题(共10小题,满分30分)
1.若等腰三角形的顶角为40°,则它的底角度数为(  )
A.40° B.50° C.60° D.70°
2.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是(  )
A.8 B.9 C.10 D.11
3.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是(  )
A.1个 B.2个 C.3个 D.4个
4.如果等腰三角形一腰上的高与另一腰的夹角为45°,那么这个等腰三角形的底角为(  )
A.22.5° B.67.5°
C.67° 50' D.22.5°或67.5°
5.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为(  )
A.48° B.36° C.30° D.24°
6.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分别交AB、AC于D、E两点.若BD=2,则AC的长是(  )
A.4 B.4 C.8 D.8
7.若a,b为等腰△ABC的两边,且满足|a﹣3|+=0,则△ABC的周长为(  )
A.11 B.13 C.11或13 D.9或15
8.如图,在等腰△ABC中,∠ABC=118°,AB的垂直平分线DE交AB于点D,交AC于点E,BC的垂直平分线PQ交BC于点P,交AC于点Q,连接BE,BQ,则∠EBQ=(  )
A.65° B.60° C.56° D.50°
9.平面直角坐标系中,已知A(1,1),B(2,0).若在x轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是(  )
A.2个 B.3个 C.4个 D.5个
10.如图,在△ABC中,AD⊥BC,垂足为D,EF垂直平分AC,交AC于点F,交BC于点E,BD=DE,若△ABC的周长为26cm,AF=5cm,则DC的长为(  )cm.
A.7 B.8 C.9 D.10
二.填空题(共10小题,满分30分)
11.如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连接OC,若∠AOC=125°,则∠ABC=   .
12.如图,在△ABC中,D,E分别在边CB和BC的延长线上,BD=BA,CE=CA,若∠BAC=50°,则∠DAE=   .
13.如图,在△ABC中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于点E,交BC于点F,若BF=1,则BC的长为:   .
14.如图,直线l1∥l2,等边△ABC的顶点C在直线l2上,若边AB与直线l1的夹角∠1=40°,则边AC与直线l2的夹角∠2=   °.
15.在平面直角坐标系xOy中,等边△ABC的三个顶点A(0,0)、B(4,0)则其第三个顶点C的坐标是   .
16.如图,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD=   .
17.如图,已知点D为△ABC内一点,AD平分∠CAB,BD⊥AD,∠C=∠CBD.若AC=10,AB=6,则AD的长为   .
18.已知,等腰△ABC中,AB=AC,∠BAC=120°,P为直线BC上一点,BP=AB,则∠APB的度数为    .
19.如图,已知AB=A1B1,A1C=A1A2,A2D=A2A3,A3E=A3A4,…,以此类推,若∠B=20°,则∠A4=   .
20.等边△ABC,AB=8,点D在直线AB上,若CD=13,则AD的长为   .
三.解答题(共7小题,满分60分)
21.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的长.
22.如图,已知在△ABC中,∠ACB=90°,CD为高,且CD,CE三等分∠ACB.
(1)求∠B的度数;
(2)求证:CE是AB边上的中线,且CE=AB.
23.如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与PA相等,BD的垂直平分线交BC于点E,连接DE.
(1)判断DE与DP的位置关系,并说明理由.
(2)若AC=5,BC=7,PA=2,求线段DE的长.
24.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.
(1)求证:AB=FE;
(2)若ED⊥AC,AB∥CE,求∠A的度数.
25.(1)如图(1)在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE;
(2)如图(2)将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请给出证明;若不成立,请说明理由.
26.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.
(1)求证:CF=DG;
(2)求出∠FHG的度数.
27.【问题背景】
如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图中线段BE、EF、FD之间的数量关系.
小王同学探究此问题的方法是:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是    .
【探索延伸】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.
【学以致用】
如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出△DEF的周长.
参考答案
一.选择题(共10小题,满分30分)
1.解:因为等腰三角形的两个底角相等,
又因为顶角是40°,
所以其底角为=70°.
故选:D.
2.解:设AB的中垂线与AB交于点E,
∵ED是AB的垂直平分线,
∴AD=BD,
∵△BDC的周长=DB+BC+CD,
∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.
故选:C.
3.解:∵△ABC≌△AEF,
∴AC=AF,故①正确;
∠EAF=∠BAC,
∴∠FAC=∠EAB≠∠FAB,故②错误;
EF=BC,故③正确;
∠EAB=∠FAC,故④正确;
综上所述,结论正确的是①③④共3个.
故选:C.
4.解:有两种情况;
(1)如图1,当△ABC是锐角三角形时,BD⊥AC于D,
则∠ADB=90°,
已知∠ABD=45°,
∴∠A=90°﹣45°=45°,
∵AB=AC,
∴∠ABC=∠C=×(180°﹣45°)=67.5°,
(2)如图2,当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,
∵∠HFE=45°,
∴∠HEF=90°﹣45°=45°,
∴∠FEG=180°﹣45°=135°,
∵EF=EG,
∴∠EFG=∠G,
=×(180°﹣135°),
=22.5°.
故选:D.
5.解:∵BD平分∠ABC,
∴∠DBC=∠ABD=24°,
∵∠A=60°,
∴∠ACB=180°﹣60°﹣24°×2=72°,
∵BC的中垂线交BC于点E,
∴BF=CF,
∴∠FCB=24°,
∴∠ACF=72°﹣24°=48°,
故选:A.
6.解:如图,∵在Rt△ABC中,∠ACB=60°,
∴∠A=30°.
∵DE垂直平分斜边AC,
∴AD=CD,
∴∠A=∠ACD=30°,
∴∠DCB=60°﹣30°=30°,
∵BD=2,
∴CD=AD=4,
∴AB=2+4=6,
在△BCD中,由勾股定理得:CB=2,
在△ABC中,由勾股定理得:AC==4,
故选:B.
7.解:根据题意得a﹣3=0,b﹣5=0,
解得a=3,b=5,
(1)若5是腰长,则三角形的三边长为:5、5、3,
能组成三角形,
周长为5+5+3=13;
(2)若5是底边长,则三角形的三边长为:3、3、5,
能组成三角形,
周长为3+3+5=11.
故选:C.
8.解:等腰△ABC中,∠ABC=118°,
∴∠A=∠C=31°,
∵AB的垂直平分线DE交AB于点D,交AC于点E,BC的垂直平分线PQ交BC于点P,交AC于点Q,
∴EA=EB,QB=QC,
∴∠ABE=∠QBC=∠A=∠C=31°,
∴∠EBQ=∠ABC﹣∠ABE﹣∠QBC=118°﹣31°﹣31°=56°,
故选:C.
9.解:∵点A、B的坐标分别为A(1,1),B(2,0).
∴AB=,
①若AC=AB,以A为圆心,AB为半径画弧与x轴有2个交点(含B点),即(0,0)、(2,0),
∴满足△ABC是等腰三角形的C点有1个;
②若BC=AB,以B为圆心,BA为半径画弧与x轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;
③若CA=CB,作AB的垂直平分线与x轴有1个交点,即满足△ABC是等腰三角形的C点有1个;
综上所述:点C在x轴上,△ABC是等腰三角形,符合条件的点C共有4个.
故选:C.
10.解:∵△ABC的周长为26cm,
∴AB+BC+AC=26cm,
∵EF垂直平分AC,AF=5cm,
∴AC=2AF=10(cm),EA=EC,
∴AB+BC=16cm,
∵AD⊥BC,BD=DE,
∴AB=AE,
∴AB=EC,
∴AB+BD=EC+DE=8(cm),
∴DC=8cm,
故选:B.
二.填空题(共10小题,满分30分)
11.解:∵AD⊥BC,∠AOC=125°,
∴∠C=∠AOC﹣∠ADC=125°﹣90°=35°,
∵D为BC的中点,AD⊥BC,
∴OB=OC,
∴∠OBC=∠C=35°,
∵OB平分∠ABC,
∴∠ABC=2∠OBC=2×35°=70°.
故答案为:70°.
12.解:∵AB=BD,AC=CE,
∴∠BAD=∠BDA,∠E=∠CAE,
设∠BAD=∠BDA=x,∠E=∠CAE=y,
∴∠ABC=∠BAD+∠BDA=2x,∠ACB=∠E+∠CAE=2y,
∵∠ABC+∠ACB+∠BAC=180°,
∴2x+2y+50°=180°,
∴x+y=65°,
∴∠DAE=∠DAB+∠CAE+∠BAC=65°+50°=115°.
故答案为:115°.
13.解:连接AF,
∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵EF是线段AB的垂直平分线,
∴FA=FB=1,
∴∠FAB=∠B=30°,
∴∠FAC=∠BAC﹣∠FAB=90°,
在Rt△FAC中,∠C=30°,
∴FC=2FA=2,
∴BC=BF+FC=3,
故答案为:3.
14.解:如图,
∵△ABC是等边三角形,
∴∠A=60°,
∵∠3=∠1=40°,
∴∠4=60°+40°=100°,
∵l1∥l2,
∴∠2=∠4=100°.
故答案为:100.
15.解:如图,
∵A(0,0)、B(4,0),
∴AB=4,
作CD⊥AB于点D,
∵△ABC是等边三角形,
∴AD=BD=2,
∴CD=2,
∴第三个顶点C的坐标为:(2,2)、(2,﹣2).
16.解:∵∠C=90°,∠ABC=60°,
∴∠A=30°,
∵BD平分∠ABC,
∴∠CBD=∠ABD=∠A=30°,
∴BD=AD=6,
∴CD=BD=6×=3.
故答案为:3.
17.解:如图,延长BD交AC于E,
∵BD⊥AD,
∴∠ADE=∠ADB=90°,
∵AD平分∠CAB,
∴∠EAD=∠BAD,
∴∠AED=∠ABD,
∴AE=AB=6,
∴DE=BD,
∵AC=10,
∴CE=10﹣6=4,
∵∠C=∠CBD,
∴BE=CE=4,
∴BD=BE=2,
由勾股定理得:AD===4.
故答案为:4.
18.解:如图1,∵在等腰△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵BP=AB,
∴∠APB==75°;
如图2,在等腰△ABC中,AB=AC,∠BAC=120°,
∴∠ABC=∠C=30°,
∵BP=AB,
∴∠APB=∠ABC=15°.
综上所述:∠APB的度数为75°或15°.
故答案为:75°或15°.
19.解:∵AB=A1B,∠B=20°,
∴∠A=∠BA1A=(180°﹣∠B)=×(180°﹣20°)=80°.
∵A1C=A1A2,A2D=A2A3,A3E=A3A4,
∴∠A1CD=∠A1A2C,
∵∠BA1A是△A1A2C的外角,
∴∠BA1A=2∠CA2A1=4∠DA3A2=8A4,
∴∠A4=10°.
故答案为:10°.
20.解:如图,
作CE⊥AB于点E,延长AB或BA到D′、D″,连接CD′、CD″,
∵△ABC是等边三角形,AB=8,
∴AE=BE=4,CE=4,
CD′=CD″=13,
设BD′=AD″=x,
则D′E=4+x,
在Rt△CED′中,根据勾股定理,得
(4+x)2+(4)2=132
解得x=7或﹣15(负值舍去)
∴BD′=AD″=7,
AD′=AB+BD′=8+7=15.
所以AD的长为7或15.
故答案为7或15.
三.解答题(共7小题,满分60分)
21.(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
∴CD=ED,∠DEA=∠C=90°,
∵在Rt△ACD和Rt△AED中
∴Rt△ACD≌Rt△AED(HL);
(2)解:∵DC=DE=1,DE⊥AB,
∴∠DEB=90°,
∵∠B=30°,
∴BD=2DE=2.
22.(1)解:∵在△ABC中,∠ACB=90°,CD,CE三等分∠ACB,
∴∠ACD=∠DCE=∠BCE=30°,则∠BCD=60°,
又∵CD为高,
∴∠B=90°﹣60°=30°
30°;
(2)证明:由(1)知,∠B=∠BCE=30°,则CE=BE,AC=AB.
∵∠ACB=90°,∠B=30°,
∴∠A=60°,
又∵由(1)知,∠ACD=∠DCE=30°,
∴∠ACE=∠A=60°,
∴△ACE是等边三角形,
∴AC=AE=EC=AB,
∴AE=BE,即点E是AB的中点.
∴CE是AB边上的中线,且CE=AB.
23.解:(1)DE⊥DP,
理由如下:∵PD=PA,
∴∠A=∠PDA,
∵EF是BD的垂直平分线,
∴EB=ED,
∴∠B=∠EDB,
∵∠C=90°,
∴∠A+∠B=90°,
∴∠PDA+∠EDB=90°,
∴∠PDE=180°﹣90°=90°,
∴DE⊥DP;
(2)连接PE,
设DE=x,则EB=ED=x,CE=7﹣x,
∵∠C=∠PDE=90°,
∴PC2+CE2=PE2=PD2+DE2,
∴32+(7﹣x)2=22+x2,
解得:x=,则DE=.
24.证明:(1)∵CB为∠ACE的角平分线,
∴∠ACB=∠FCE,
在△ABC与△FEC中,

∴△ABC≌△FEC(AAS),
∴AB=FE;
(2)∵AB∥CE,
∴∠B=∠FCE,
∴∠E=∠B=∠FCE=∠ACB,
∵ED⊥AC,即∠CDE=90°,
∴∠E+∠FCE+∠ACB=90°,
即3∠ACB=90°,
∴∠ACB=30°,
∴∠B=30°,
∴∠A=180°﹣∠B﹣∠ACB=180°﹣30°﹣30°=120°.
25.证明:(1)∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中,

∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,
∴∠CAE=∠ABD,
∵在△ADB和△CEA中,

∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE.
26.(1)证明:∵在△CBF和△DBG中,

∴△CBF≌△DBG(SAS),
∴CF=DG;
(2)解:∵△CBF≌△DBG,
∴∠BCF=∠BDG,
又∵∠CFB=∠DFH,
又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,
△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,
∴∠DHF=∠CBF=60°,
∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.
27.(1)解:如图1,
在△ABE和△ADG中,
∵,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
∵,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案为:EF=BE+DF.
(2)解:结论EF=BE+DF仍然成立;
理由:如图2,延长FD到点G.使DG=BE.连接AG,
在△ABE和△ADG中,
∵,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
∵,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,
在△AEB与△CGB中,
∵,
∴△AEB≌△CGB(SAS),
∴BE=BG,∠ABE=∠CBG.
∵∠EBF=45°,∠ABC=90°,
∴∠ABE+∠CBF=45°,
∴∠CBF+∠CBG=45°.
在△EBF与△GBF中,
∵,
∴△EBF≌△GBF(SAS),
∴EF=GF,
∴△DEF的周长=EF+ED+DF=AE+CF+DE+DF=AD+CD=5+5=10.