《第1章三角形的证明》单元测试题-北师大版八年级数学下册(含解析) (6)

文档属性

名称 《第1章三角形的证明》单元测试题-北师大版八年级数学下册(含解析) (6)
格式 docx
文件大小 761.2KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-02-09 11:39:33

图片预览

文档简介

北师大版八年级数学下册单元测试题
第1章 三角形的证明
一、单选题
1.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为(  )
A.140° B.100° C.50° D.40°
2.如图,在平面直角坐标系中,点在x轴正半轴上,点在直线上,若,且均为等边三角形,则线段的长度为( )
A. B. C. D.
3.适合下列条件的△ABC中, 直角三角形的个数为
①②,∠A=45°;③∠A=32°, ∠B=58°;
④⑤⑥
⑦⑹
A.2个 B.3个 C.4个 D.5个
4.如图,在矩形中,,的平分线交边于点,于点,连接并延长交边于点,连接交于点.给出下列命题:①;②;③;④.其中正确命题为(  )
A.①② B.①③
C.①③④ D.①②③④
5.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为( )
A.80° B.90° C.100° D.130°
6.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP,并廷长交BC于点D,则下列说法中正确的个数是(  )
①AD是∠BAC的平分线 ②∠ADC=60°
③点D在AB的垂直平分线上 ④若AD=2dm,则点D到AB的距离是1dm
⑤S△DAC:S△DAB=1:2
A.2 B.3 C.4 D.5
7.如图,在RtΔABC中,∠ACB=90°,AC=9,BC=12,AD是∠BAC的平分线,若点P,Q分别是AD和AC上的动点,则PC+PQ的最小值是( )
A. B. C.12 D.15
8.如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E,若AB=BC,则下列结论中错误的是( )
A.BD⊥AC B.∠A=∠EDA C.2AD=BC D.BE=ED
9.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=∠AOB,其中能确定OC平分∠AOB的有( )
A.4个 B.3个 C.2个 D.1个
10.如图,四边形ABCD中,∠C=,∠B=∠D=,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为( ).
A. B. C. D.
二、填空题
11.如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=_______°.
12.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为_____.
13.如图,以数轴上的一个单位长度为边长作一个正方形,以数轴上表示1的点为圆心,正方形对角线的长为半径画弧,交数轴负半轴于点A,则点A表示的数为____.(提示:直角三角形中两直角边的平方和等于斜边的平方)
14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1、l2之间的距离为2,l2、l3之间的距离为3,则AC的长是_________;
15.如图,中,,,点为中点,且,的平分线与的垂直平分线交于点,将沿(在上,在上)折叠,点与点恰好重合,则为________度.
16.如图,中,点在边上,,,垂直于的延长线于点,,,则边的长为_____.
17.在△ABC中,∠BAC=120°,AB=AC,∠ACB的平分线交AB于D,AE平分∠BAC交BC于E,连接DE,DF⊥BC于F,则∠EDC=_____°.
18.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:
①EF=BE+CF; ②∠BOC=90°+∠A;
③点O到△ABC各边的距离相等; ④设OD=m,AE+AF=n,则.
其中正确的结论是____.(填序号)
19.如图,BE、CE分别为的内、外角平分线,BF、CF分别为的内、外角平分线,若,则_______度.
20.如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=_____.
21.如图,在中,,D、E是内两点.AD平分,,若,,则______cm.
22.如图,在△ABC和△ADC中,下列论断:①AB=AD;②∠ABC=∠ADC=90°;③BC=DC.把其中两个论断作为条件,另一个论断作为结论,可以写出_个真命题.
23.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.
24.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确的是_____.
三、解答题
25.如图,在⊿中, ,,是⊿内的一点,且,,, ;求的度数.
26.如图,四边形ABCD中,AD∥BC,点E在CD上,EA,EB分别平分∠DAB和∠CBA,设AD=x,BC=y且(x﹣3)2+|y﹣4|=0.求AB的长.
27.如图,已知AE⊥FE,垂足为E,且E是DC的中点.
(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C,D,且AD=DC,判断AE是∠FAD的角平分线吗?(不必说明理由)
(2)如图②,如果(1)中的条件“AD=DC”去掉,其余条件不变,(1)中的结论仍成立吗?请说明理由;
(3)如图③,如果(1)中的条件改为“AD∥FC”,(1)中的结论仍成立吗?请说明理由.
28.在平面直角坐标系xOy中,A(-1,0),B(1,0),C(0,1),点D为x轴正半轴上的一个动点,点E为第一象限内一点,且CE⊥CD,CE=CD.
(1)试说明:∠EBC=∠CAB ;
(2)取DE的中点F,连接OF,试判断OF与AC的位置关系,并说明理由;
(3)在(2)的条件下,试探索O、D、F三点能否构成等腰三角形,若能,请直接写出所有符合条件的点D的坐标;若不能,请说明理由.
参考答案
1.B
【详解】
如图,分别作点P关于OB、OA的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,此时△PMN周长取最小值.根据轴对称的性质可得OC=OP=OD,∠CON=∠PON,∠POM=∠DOM;因∠AOB=∠MOP+∠PON=40°,即可得∠COD=2∠AOB=80°,在△COD中,OC=OD,根据等腰三角形的性质和三角形的内角和定理可得∠OCD=∠ODC=50°;在△CON和△PON中,OC=OP,∠CON=∠PON,ON=ON,利用SAS判定△CON≌△PON,根据全等三角形的性质可得∠OCN=∠NPO=50°,同理可得∠OPM=∠ODM=50°,所以∠MPN=∠NPO+∠OPM=50°+50°=100°.故选B.
点睛:本题考查了轴对称的性质、等腰三角形的性质、三角形的内角和定理、全等三角形的判定与性质等知识点,根据轴对称的性质证得△OCD是等腰三角形,求得得∠OCD=∠ODC=50°,再利用SAS证明△CON≌△PON,△ODM≌△OPM,根据全等三角形的性质可得∠OCN=∠NPO=50°,∠OPM=∠ODM=50°,再由∠MPN=∠NPO+∠OPM即可求解.
2.D
【分析】根据题意得出∠AnOBn=30°,从而推出AnBn=OAn,得到BnBn+1=BnAn+1,算出B1A2=1,B2A3=2,B3A4=4,找出规律得到BnAn+1=2n-1,从而计算结果.
解:设△BnAnAn+1的边长为an,
∵点B1,B2,B3,…是直线上的第一象限内的点,
过点A1作x轴的垂线,交直线于C,
∵A1(1,0),令x=1,则y=,
∴A1C=,
∴,
∴∠AnOBn=30°,
∵均为等边三角形,
∴∠BnAnAn+1=60°,
∴∠OBnAn=30°,
∴AnBn=OAn,
∵∠BnAn+1Bn+1=60°,
∴∠An+1BnBn+1=90°,
∴BnBn+1=BnAn+1,
∵点A1的坐标为(1,0),
∴A1B1=A1A2=B1A2=1,A2B2=OA2=B2A3=2,A3B3=OA3=B3A4=4,...,
∴AnBn=OAn=BnAn+1=2n-1,
∴=B2019A2020=,
故选D.
【点拨】本题考查了一次函数的性质、等边三角形的性质以及三角形外角的性质,本题属于基础题,难度不大,解决该题型题目时,根据等边三角形边的特征找出边的变化规律是关键.
3.C
【解析】
根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:,故①不能构成直角三角形;
当a=6,∠A=45°时,②不足以判定该三角形是直角三角形;
根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;
根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;
由三角形的三边关系,2+2=4可知⑤不能构成三角形;
令a=3x,b=4x,c=5x,可知a2+b2=c2,故⑥能够成直角三角形;
根据三角形的内角和可知⑦不等构成直角三角形;
由a2=5,b2=20,c2=25,可知a2+b2=c2,故⑧能够成直角三角形.
故选:C.
点睛:此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.
4.B
【详解】
在矩形ABCD中,,
∵DE平分∠ADC,∴∠ADE=∠CDE=45°,
∵AD⊥DE,∴△ADH是等腰直角三角形, ,∴AH=AB=CD.
∵△DEC是等腰直角三角形, ,∴AD=DE,∴∠AED=67.5°,
∴∠AEB=180° 45° 67.5°=67.5°,∴∠AED=∠AEB.
故①正确;
设DH=1,
则AH=DH=1, , , ,故②错误;
∵∠AEH=67.5°,∴∠EAH=22.5°.
∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=22.5°,
∴∠OAH=∠OHA,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE,
,故③正确;
∵AH=DH,CD=CE,
在△AFH与△CHE中,
∵∠AHF=∠HCE=22.5°,∠FAH=∠HEC=45°,AH=CE,∴△AFH≌△CHE,∴AF=EH.
在△ABE与△AHE中,
∵AB=AH,∠BEA=∠HEA,AE=AE,∴△ABE≌△AHE,∴BE=EH,
∴BC BF=(BE+CE) (AB AF)=(CD+EH) (CD EH)=2EH,
故④错误,
所以①,③正确,故选B
【点睛】本题考查了相似三角形的判定与性质, 角平分线的性质, 等腰三角形的判定与性质, 等腰直角三角形, 矩形的性质.
根据矩形的性质得到,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到,得到等腰三角形求出
∠AED=67.5°,∠AEB=180°-45°-67.5°=67.5°,得到①正确;设DH=1,则AH=DH=1, ,求出,得到,故②错误;通过角的度数求出△AOH和△OEH是等腰三角形,从而得到③正确;由△AFH≌△CHE,到AF=EH,由△ABE≌△AHE,得到BE=EH,于是得到BC-BF=(BE+CE)-(AB-AF)=(CD+EH)-(CD-EH)=2EH,从而得到④错误.
5.C
【分析】
作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.
【详解】
解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,
∵∠DAB=130°,
∴∠AA′M+∠A″=50°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×50°=100°,
故选C.
【点拨】本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M、N的位置是解题关键.
6.D
【分析】
①根据作图的过程可以判定AD是∠BAC的角平分线;
②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;
③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;
④作DH⊥AB于H,由∠1=∠2,DC⊥AC,DH⊥AB,推出DC=DH即可解决问题;
⑤利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.
【详解】
解:①根据作图的过程可知,AD是∠BAC的平分线,故①正确;
②如图,∵在△ABC中,∠C=90°,∠B=30°,
∴∠CAB=60°.
又∵AD是∠BAC的平分线,
∴∠1=∠2=∠CAB=30°,
∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;
③∵∠1=∠B=30°,
∴AD=BD,
∴点D在AB的中垂线上.故③正确;
④作DH⊥AB于H,
∵∠1=∠2,DC⊥AC,DH⊥AB,
∴DC=DH,
在Rt△ACD中,CD=AD=1dm,
∴点D到AB的距离是1dm;故④正确,
⑤在Rt△ACB中,∵∠B=30°,
∴AB=2AC,
∴S△DAC:S△DAB=AC CD: AB DH=1:2;故⑤正确.
综上所述,正确的结论是:①②③④⑤,共有5个.
故选:D.
【点拨】本题考查了角平分线的性质、线段垂直平分线的性质以及作图-基本作图.解题时,需要熟悉等腰三角形的判定与性质.
7.B
【分析】
过点D作DE⊥AB于点E,过点E作EQ⊥AC于点Q,EQ交AD于点P,连接CP,此时PC+PQ=EQ是最小值,根据勾股定理可求出AB的长度,再根据EQ⊥AC、∠ACB=90°即可得出EQ∥BC,进而可得出,代入数据即可得出EQ的长度,此题得解.
【详解】
解:如图所示,过点D作DE⊥AB于点E,过点E作EQ⊥AC于点Q,EQ交AD于点P,连接CP,此时PC+PQ=EQ是最小值,
在Rt△ABC中,∠ACB=90°,AC=9,BC=12,
∴,
∵AD是∠BAC的平分线,
∴∠CAD=∠EAD,
在△ACD和△AED中,,
∴△ACD≌△AED(AAS),
∴AE=AC=9.
∵EQ⊥AC,∠ACB=90°,
∴EQ∥BC,

∴,
.
故选B.
【点拨】本题考查了勾股定理、轴对称中的最短路线问题以及平行线的性质,找出点C的对称点E,及通过点E找到点P、Q的位置是解题的关键.
8.C
【详解】
试题分析:BD是△ABC的角平分线, AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA, ∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED.所以A、B、D正确,C错误.
9.D
【详解】
如图,
根据角平分线的意义,可由∠AOC=∠BOC,知OC是∠AOB的平分线;
如图,
此时,∠AOB=2∠BOC,∠BOC=∠AOB,但OC不是∠AOB的平分线;
由于∠AOC+∠COB=∠AOB,但是∠AOC与∠COB不一定相等,所以OC不一定是∠AOB的平分线.
所以只有①能说明OC是∠AOB的角平分线.
故选D.
10.D
【详解】
作点A关于直线BC和直线CD的对称点G和H,连接GH,交BC、CD于点E、F,连接AE、AF,则此时△AEF的周长最小,由四边形的内角和为360°可知,∠BAD=360°-90°-90°-50°=130°,即∠1+∠2+∠3=130°①,由作图可知,∠1=∠G,∠3=∠H,△AGH的内角和为180°,则2(∠1+∠3)+ ∠2=180°②,又①②联立方程组,解得∠2=80°.
故选D.
考点:轴对称的应用;路径最短问题.
11.105°
【分析】
如图,作辅助线,构建全等三角形,证明△AEC≌△CFH,得CE=FH,将CE转化为FH,与BF在同一个三角形中,根据两点之间线段最短,确定点F的位置,即F为AC与BH的交点时,BF+CE的值最小,求出此时∠AFB=105°.
【详解】
解:如图,作CH⊥BC,且CH=BC,连接BH交AD于M,连接FH,
∵△ABC是等边三角形,AD⊥BC,
∴AC=BC,∠DAC=30°,
∴AC=CH,
∵∠BCH=90°,∠ACB=60°,
∴∠ACH=90° 60°=30°,
∴∠DAC=∠ACH=30°,
∵AE=CF,
∴△AEC≌△CFH,
∴CE=FH,BF+CE=BF+FH,
∴当F为AC与BH的交点时,BF+CE的值最小,
此时∠FBC=45°,∠FCB=60°,
∴∠AFB=105°,
故答案为105°.
【点拨】此题考查全等三角形的性质和判定、等边三角形的性质、最短路径问题,关键是作出辅助线,当BF+CE取得最小值时确定点F的位置,有难度.
12..
【分析】
作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,
【详解】
解:∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,
∴四边形ABCB′是平行四边形,∵等边三角形ABC是边长为2,
∵D为BC的中点,∴AD⊥BC,
∴AD=,BD=CD=1,BB′=2AD=,
作B′G⊥BC的延长线于G,∴B′G=AD=,
在Rt△B′BG中,BG===3,
∴DG=BG﹣BD=3﹣1=2,
在Rt△B′DG中,B′D===.
故BE+ED的最小值为.
13.1-
【解析】
【分析】
根据直角三角形中两直角边的平方和等于斜边的平方可求出CE的长,根据CA=CE结合数轴上点的位置即可得出结论.
【详解】
∵正方形的边长为1,
∴正方形对角线的长度=,
∴CA=,
∵C点表示的数为1,点A在点C的左边,
∴点A表示的数为1-,
故答案为:1-.
【点拨】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.
14.
【解析】
【分析】
首先作AD⊥l3于D,作CE⊥l3于E,再证明△ABD≌△BCE,因此可得BE=AD=3,再结合勾股定理可得AC的长.
【详解】
作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,∴∠ABD+∠CBE=90°,
又∠DAB+∠ABD=90°,
∴∠BAD=∠CBE,
又AB=BC,∠ADB=∠BEC.
∴△ABD≌△BCE,∴BE=AD=3,
在Rt△BCE中,根据勾股定理,得BC=,
在Rt△ABC中,根据勾股定理,
得AC=
故答案为
【点拨】本题主要考查直角三角形的综合问题,关键在于证明三角形的全等,这类题目是固定的解法,一定要熟练掌握.
15.108
【分析】
连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.
【详解】
如图,连接OB、OC,
∵∠BAC=54°,AO为∠BAC的平分线,
∴∠BAO=∠BAC=×54°=27°,
又∵AB=AC,
∴∠ABC=(180°-∠BAC)=×(180°-54°)=63°,
∵DO是AB的垂直平分线,
∴OA=OB,
∴∠ABO=∠BAO=27°,
∴∠OBC=∠ABC-∠ABO=63°-27°=36°,
∵AO为∠BAC的平分线,AB=AC,
∴△AOB≌△AOC(SAS),
∴OB=OC,
∴点O在BC的垂直平分线上,
又∵DO是AB的垂直平分线,
∴点O是△ABC的外心,
∴∠OCB=∠OBC=36°,
∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=36°,
在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-36°-36°=108°,
故答案为108.
【点拨】本题考查了三角形综合题,涉及了角平分线的定义,等腰三角形的性质,线段垂直平分线的性质与判定,三角形的外心,全等三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
16.
【分析】
如图,延长BD到点G,使DG=BD,连接CG,则由线段垂直平分线的性质可得CB=CG,在EG上截取EF=EC,连接CF,则∠EFC=∠ECF,∠G=∠CBE,根据等腰三角形的性质和三角形的内角和定理可得∠EFC=∠A=2∠CBE,再根据三角形的外角性质和等腰三角形的判定可得FC=FG,设CE=EF=x,则可根据线段间的和差关系求出DF的长,进而可求出FC的长,然后根据勾股定理即可求出CD的长,再一次运用勾股定理即可求出答案.
【详解】
解:如图,延长BD到点G,使DG=BD,连接CG,则CB=CG,在EG上截取EF=EC,连接CF,则∠EFC=∠ECF,∠G=∠CBE,
∵EA=EB,∴∠A=∠EBA,
∵∠AEB=∠CEF,
∴∠EFC=∠A=2∠CBE=2∠G,
∵∠EFC=∠G+∠FCG,
∴∠G=∠FCG,
∴FC=FG,
设CE=EF=x,则AE=BE=11-x,
∴DE=8-(11-x)=x-3,
∴DF=x-(x-3)=3,
∵DG=DB=8,
∴FG=5,∴CF=5,
在Rt△CDF中,根据勾股定理,得,
∴.
故答案为:.
【点拨】本题考查了等腰三角形的判定和性质、三角形的内角和定理和三角形的外角性质、勾股定理以及线段垂直平分线的性质等知识,具有一定的难度,正确添加辅助线、灵活应用上述知识是解题的关键.
17.30
【分析】
过D作DM⊥AC交CA的延长线于M,DN⊥AE,根据角平分线的性质得到DF=DM,根据邻补角的定义得到∠DAM=60°,根据角平分线的定义得到∠BAE=60°,推出DE平分∠AEB,根据等腰三角形的性质得到∠AEB=90°,得到∠DEF=45°,根据三角形的外角的性质即可得到结论.
【详解】
过D作DM⊥AC交CA的延长线于M,DN⊥AE,
∵CD平分∠ACB,
∴DF=DM,
∵∠BAC=120°,
∴∠DAM=60°,
∵AE平分∠BAC,
∴∠BAE=60°,
∴∠DAM=∠BAE,
∴DM=DN,
∴DF=DN,
∵DF⊥BC,
∴DE平分∠AEB,
∵AB=AC,AE平分∠BAC交BC于E,
∴AE⊥BC,
∴∠AEB=90°,
∴∠DEF=45°,
∵∠B=∠ACB=30°,CD平分∠ACB,
∴∠DCF=15°,
∴∠EDC=∠DEF -∠DCF=30°.
故答案为30.
【点拨】本题考查了等腰三角形的性质、角平分线的性质、角平分线的定义,正确的作出辅助线,熟练运用性质是解题的关键.
18.①②③
【分析】
由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形的内角和定理,即可求出②∠BOC=90°+∠A正确;由平行线的性质和角平分线的定义可得△BEO和△CFO是等腰三角形可得①EF=BE+CF正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形的面积求法,设OD=m,AE+AF=n,则△AEF的面积=,④错误.
【详解】
在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,
∴∠OBC+∠OCB=90°-∠A,
∴∠BOC=180°-(∠OBC+∠OCB)=90°,故②∠BOC=90°+∠A正确;
在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠OBC=∠EOB,∠OCB=∠OCF,
∵EF∥BC,
∴∠OBC=∠EOB,∠OCB=∠FOC,
∠EOB=∠OBE,∠FOC=∠OCF,
∴BE=OE,CF=OF,
∴EF=OE+OF=BE+CF,
即①EF=BE+CF正确;
过点O作OM⊥AB于M,作ON⊥BC于点N,连接AO,
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴ON=OD=OM=m,即③点O到△ABC各边的距离相等正确;
∴S△AEF=S△AOE+ S△AOF=AE·OM+AF·OD=OD·(AE+AF)=mn,故④错误;
故选①②③
【点拨】此题主要考查角平分线的性质,解题的关键是熟知等腰三角形的判定与性质.
19.13
【分析】
根据BF,CF分别为△EBC的内、外角平分线分别设,,再根据BE,CE分别为△ABC的内,外角平分线,得到和 ,最后根据 和 求出 即可.
【详解】
BF,CF分别为的内、外角平分线,
,,
设,,
,,
又BE,CE分别为的内,外角平分线,
,,
,,
又,

又,


故答案为:13.
【点拨】此题考查了三角形内角和外角角平分线的相关知识,涉及到三角形外角等于与其不相邻的两内角和的知识,有一定难度.
20.7
【详解】
由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7.
故答案为:7.
点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.
21.10
【分析】
过点E作,垂足为F,延长AD到H,交BC于点H,过点D作,垂足为G,由直角三角形中所对的直角边是斜边的一半可知,,然后由等腰三角形三线合一可知,,然后再证明四边形DGFH是矩形,从而得到,最后根据计算即可.
【详解】
解;过点E作,垂足为F,延长AD到H,交BC于点H,过点D作,垂足为G.
,,


,,

又,

,AD平分,
,且.
,,,
四边形DGFH是矩形.

.
故答案为:10.
【点拨】本题主要考查的是等腰三角形的性质,含直角三角形的性质以及矩形的性质和判定,根据题意构造含的直角三角形是解题的关键.
22.2
【详解】
根据题意,可得三种命题,由①②③,根据直角三角形全等的判定HL可证明,是真命题;由①③②,能证明∠ABC=∠ADC,但是不能得出一定是90°,是假命题;由②③①,根据SAS可证明两三角形全等,再根据全等三角形的性质可证明,故是真命题.因此可知真命题有2个.
故答案为2.
点睛:仔细审题,将其中的两个作为题设,另一个作为结论,可得到三种情况,然后根据全等三角形的判定定理和性质可判断出是否是真命题.
23.(0,21009)
【详解】
【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.
【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,
∴OA1=,OA2=()2,…,OA2018=()2018,
∵A1、A2、…,每8个一循环,
∵2018=252×8+2
∴点A2018的在y轴正半轴上,OA2018==21009,
故答案为(0,21009).
【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.
24.①②⑤
【分析】
由平行四边形的性质得出AD∥BC,AD=BC,由AE平分∠BAD,可得∠BAE=∠DAE,可得∠BAE=∠BEA,得AB=BE,由AB=AE,得到△ABE是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS证明△ABC≌△EAD,①正确;由△FCD与△ABD等底(AB=CD)等高(AB与CD间的距离相等),得出S△FCD=S△ABD,由△AEC与△DEC同底等高,所以S△AEC=S△DEC,得出S△ABE=S△CEF.⑤正确.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠EAD=∠AEB,
又∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠BAE=∠BEA,
∴AB=BE,
∵AB=AE,
∴△ABE是等边三角形;
②正确;
∴∠ABE=∠EAD=60°,
∵AB=AE,BC=AD,
∴△ABC≌△EAD(SAS);
①正确;
∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),
∴S△FCD=S△ABC,
又∵△AEC与△DEC同底等高,
∴S△AEC=S△DEC,
∴S△ABE=S△CEF;
⑤正确.
若AD与AF相等,即∠AFD=∠ADF=∠DEC,
即EC=CD=BE,
即BC=2CD,
题中未限定这一条件,
∴③④不一定正确;
故答案为①②⑤.
【点拨】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.
25.135°
【分析】
连接BD,等腰直角△DAB与等腰直角△CDP有公共顶点C,则可证明⊿≌⊿,求得DB的长,判断△DBP是直角三角形,从而求得∠BPC的度数.
【详解】
解:如图,连接
∵,
∴⊿为等腰直角三角形.
∴.



∵,
∴⊿≌⊿()

在⊿中,.
又∵
∴.

∴.
26.7
【分析】
由非负性可求AD=3,BC=4,如图,在AB上截取AH=AD=3,连接HE,由“SAS”可证△DAE≌△HAE,可得∠DEA=∠AEH,由“ASA”可证△BEH≌△BEC,可得BH=BC=4,即可求解.
【详解】
∵(x﹣3)2+|y﹣4|=0,
∴x-3=0,y-4=0,
∴x=3,y=4,
∴AD=3,BC=4,
如图,在AB上截取AH=AD=3,连接HE,
∵AD∥BC,
∴∠DAB+∠ABC=180°,
∵EA,EB分别平分∠DAB和∠CBA,
∴∠DAE=∠EAB=∠DAB,∠EBC=∠EBA=∠ABC,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°,
∴∠DEA+∠BEC=90°,
∵∠DAE=∠EAH,AD=AH,AE=AE,
∴△DAE≌△HAE(SAS)
∴∠DEA=∠AEH,
∵∠AEH+∠BEH=90°,∠DEA+∠BEC=90°,
∴∠HEB=∠CEB,且BE=BE,∠CBE=∠HBE,
∴△BEH≌△BEC(ASA)
∴BH=BC=4,
∴AB=AH+BH=7.
【点拨】此题考查平行线的性质:两直线平行同旁内角互补,角平分线的性质,三角形全等的判定及性质.
27.(1)AE是∠FAD的角平分线(2)成立(3)成立
【解析】
【分析】
见详解
【详解】
(1)AE是∠FAD的角平分线;
(2)成立,如图,延长FE交AD于点B,
∵E是DC的中点,
∴EC=ED,
∵FC⊥DC,AD⊥DC,
∴∠FCE=∠EDB=90°,
在△FCE和△BDE中,
,
∴△FCE≌△BDE,
∴EF=EB,
∵AE⊥FE,
∴AF=AB,
∴AE是∠FAD的角平分线;
(3)成立,如图,延长FE交AD于点B,
∵AD=DC,
∴∠FCE=∠EDB,
在△FCE和△BDE中,
,
∴△FCE≌△BDE,
∴EF=EB,
∵AE⊥FE,
∴AF=AB,
∴AE是∠FAD的角平分线.
【点拨】本题主要考察了全等三角形的判定与性质、线段的垂直平分线的性质以及等腰三角形三线合一的性质,延长FE交AD于点B,发现△FCE与△BDE一定全等是解决问题的关键.
28.(1)证明见解析;(2)OF∥AC;(3)D(1,0)或D(1+,0)
【解析】
【分析】
(1)易证△AOC,△BOC均为等腰直角三角形,且∠ACD=∠ECB,从而得到
△ACD≌△BCE,由全等三角形对应角相等即可得出结论;
(2)作FL⊥OC ,FK⊥OB,易证∠CFL=∠KFD,CF=DF=DE,得到△CFL≌△DFK,由全等三角形对应边相等得到FL=FK,由角平分线判定定理得到OF平分∠COB,从而得到∠COF=∠BOF=45°,即可得到OF∥AC.
(3)设D(x,0)(x>0).则OD=x,过E作EG⊥y轴于G,则△EGC≌△COD,得到E的坐标,由中点坐标公式得到F的坐标,由两点间距离公式得到OF,DF的长.然后分三种情况讨论:①OD=OF,②OD=FD,③OF=FD.
【详解】
(1)∵A(-1,0),B(1,0),C(0,1),∴AO=CO=BO=1.
∵CO⊥AB,∴AC=BC,△AOC,△BOC均为等腰直角三角形,∴∠CBO=∠BCO=∠ACO=∠CAO =45°,∠ACB=90°,即∠ACD+∠BCD =90°.
又∵CE⊥CD,∴∠ECB+∠BCD =90°,∴∠ACD=∠ECB.
在△ACD与△BCE中,∵,∴△ACD≌△BCE,∴∠EBC=∠CAB.
(2)OF∥AC.理由如下:
作FL⊥OC ,FK⊥OB,如图,∵CO⊥BO,∴∠LFK =90°,
∵CE=CD,点F是DE的中点,∴CF⊥DE,∴∠CFL+∠LFD =90°.
又∵∠KFD+∠LFD =90°,∴∠CFL=∠KFD.
∵CE⊥CD,点F是DE的中点,∴CF=DF=DE.
在△CFL与△DFK中,∵,∴△CFL≌△DFK,∴FL=FK.
又∵FL⊥OC ,FK⊥OB,∴OF平分∠COB,∴∠COF=∠BOF=45°.
又∵∠CAO =45°,∠BOF=∠CAO,∴OF∥AC.
(3)设D(x,0)(x>0).则OD=x,过E作EG⊥y轴于G.
∵CE⊥CD,∴∠ECD=90°,∴∠GCE+∠DCO=90°.
∵∠GCE+∠GEC=90°,∴∠GEC=∠OCD.
∵∠EGC=∠COD=90°,CE=CD,∴△EGC≌△COD,∴GE=OC=1,CG=OD=x,∴E(1,x+1).
∵F为ED的中点,∴F(,),∴OF==,DF==.
△ODF为等腰三角形,分三种情况讨论:
①OD=OF,则x=,解得:x=,∴D(,0);
②OD=FD,则x=,解得:x=±1(负数舍去),∴x=1,∴D(1,0);
③OF=FD,则=,解得:x=0(舍去),∴此种情况不成立.
综上所述:D(1,0)或D(,0).
【点拨】本题是三角形综合题.考查了全等三角形的判定与性质,等腰三角形的判定,两点间距离公式、勾股定理、角平分线的判定定理等知识点,难度较大.解题的关键是证明OF平分∠COB和表示出三角形OPF的三边.