中小学教育资源及组卷应用平台
人教版2022年春季七年级数学下册课后巩固训练
5.3 平行线的性质
一、选择题
1.下列命题是真命题的是( )
A.内错角相等
B.过一点有且只有一条直线与已知直线垂直
C.相等的角是对顶角
D.过直线外一点,有且只有一条直线与已知直线平行
2.如图,一束平行光线中,插入一张对边平行的纸版,如果光线与纸版右下方所成的∠1是110°,那么光线与纸版左上方所成的∠2的度数是( )
A.110° B.100° C.90° D.70°
3.如图,一条“U”型水管中AB//CD,若∠B=75°,则∠C应该等于( )
A. B. C. D.
4.如图,点,,,在同一条直线上,,,则的度数是( )
A. B. C. D.
5.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )
A.45° B.25° C.15° D.20°
6.如图,下列说法错误的是( )
A.如果∠AED=∠C,则 DE//BC
B.如果∠1=∠2,则 BD//EF
C.如果AB//EF,则∠FEC=∠A
D.如果∠ABC+∠BDE=180°,则AB//EF
7.一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
A.第一次向右拐 50° ,第二次向左拐130° B.第一次向右拐 50° ,第二次向右拐130°
C.第一次向左拐 50° ,第二次向左拐130° D.第一次向左拐 30° ,第二次向右拐 30°
8.已知直线,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=25°,则∠2的度数为( )
A.55° B.45° C.30° D.25°
二、填空题
9.如果题设成立,那么结论一定成立,这样的命题叫做________.题设成立时,不能保证结论一定成立,这样的命题叫做________.
10.请写出“两直线平行,同位角相等”的结论:_____.
11.命题:直线a、b、c,若a⊥b,c⊥b,则a//c;则此命题为 ___命题.(填真或假)
12.如图,AB∥CD且被直线AE所截,∠1=80°,则∠2的度数是 ___.
13.如图,平分,,,则__.
14.如图,已知是上一点,平分交于点,,则的度数为_______________.
15.已知:某小区地下停车场的栏杆如图所示,当栏杆抬起到最大高度时∠ABC=150°,若此时CD平行地面AE,则_________度.
16.如图①,已知,,的交点为,现作如下操作:第一次操作,分别作和的平分线,交点为;第二次操作,分别作和的平分线,交点为;第三次操作,分别作和的平分线,交点为……第次操作,分别作和的平分线,交点为.如图②,若,则的度数是__________.
三、解答题
17.如图,AD//BC,的平分线交于点,交的延长线于点,.
求证:.
请将下面的证明过程补充完整:
证明:∵AD//BC,
(理由: ).
平分,
.
.
,
,
(理由: ).
(理由: ).
18.如图,已知AB∥CD,AD和BC交于点O,E为OC上一点,F为CD上一点,且∠CEF+∠BOD=180°.说明∠EFC=∠A的理由.
19.已知:如图,直线DE//AB.求证:∠B+∠D=∠BCD.
20.如图,已知EFAB,∠DEF=∠A.
(1)求证:DEAC;
(2)若CD平分∠ACB,∠BED=60°,求∠ACD的度数.
21.如图,,,,,与相交于点.
(1)求证:;
(2)求的度数.
参考答案
1.D
【解析】
【分析】
根据平行线的性质、垂直的判定、对顶角和平行线的判定进行判断即可.
【详解】
解:A、两直线平行,内错角相等,原命题是假命题;
B、在同一平面上,过一点有且只有一条直线与已知直线垂直,原命题是假命题;
C、相等的角不一定是对顶角,原命题是假命题;
D、过直线外一点,有且只有一条直线与已知直线平行,是真命题;
故选:D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质、垂直的判定、对顶角和平行线的判定.
2.A
【解析】
【分析】
根据AB∥CD,BC∥AD,分别得到∠1+∠ADC=180°,∠2+∠ADC=180°,因此∠1=∠2,即可求解.
【详解】
解:如图:
∵AB∥CD,
∴∠1+∠ADC=180°,
∵BC∥AD,
∴∠2+∠ADC=180°,
∴∠1=∠2.
∵∠1=110°,
∴∠2=110°.
故选:A.
【点睛】
本题考查平行线的性质,两直线平行,同旁内角互补.
3.C
【解析】
【分析】
直接根据平行线的性质即可得出结论.
【详解】
解:∵AB∥CD,∠B=75°,
∴∠C=180°-∠B=180°-75°=105°.
故选:C.
【点睛】
本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解答此题的关键.
4.B
【解析】
【分析】
根据推出,求出的度数即可求出答案.
【详解】
,
∴,
,
,
.
故选:.
【点睛】
此题考查了平行线的判定及性质,熟记平行线的判定定理:内错角相等两直线平行是解题的关键.
5.C
【解析】
【分析】
直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°-30°=15°.
故选:C.
【点睛】
此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
6.D
【解析】
【分析】
在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.
【详解】
解:A、∠AED=∠C,则 DE//BC,故原选项正确,不符合题意;
B、∠1=∠2,则 BD//EF,故原选项正确,不符合题意;
C、AB//EF,则∠FEC=∠A,故原选项正确,不符合题意;
D、∠ABC+∠BDE=180°,则BC//DE,故原选项错误,符合题意.
故选:D.
【点睛】
本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
7.D
【解析】
【分析】
根据题意可得两直线平行则同位角相等,据此分析判断即可.
【详解】
解:∵两次拐弯后,按原来的相反方向前进,
∴两次拐弯的方向相同,形成的角是同位角,
故答案为:D
【点睛】
本题考查了平行线的性质,掌握平行线的性质是解题的关键.
8.A
【解析】
【分析】
易求的度数,再利用平行线的性质即可求解.
【详解】
解:,,
,
直线,
,
故选:A.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质是解题的关键.
9. 真命题 假命题
【解析】
略
10.同位角相等
【解析】
【分析】
命题是由题设和结论两部分组成的,将这个命题改写成“如果那么”的形式即可得出答案.
【详解】
解:将命题改写成“如果那么”的形式为:如果两直线平行,那么同位角相等,
则此命题的结论为:同位角相等,
故答案为:同位角相等.
【点睛】
本题考查了命题,熟练掌握命题的概念是解题关键.
11.真
【解析】
【分析】
根据平行线的性质定理判断即可.
【详解】
解:∵a⊥b,c⊥b,
∴a∥c,
∴直线a、b、c,若a⊥b,c⊥b,则a∥c;则此命题为真命题;
故答案为:真.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断该命题的真假关键是要熟悉课本中与平行线有关的性质定理.
12.
【解析】
【分析】
根据对顶角以及平行线的性质,求解即可.
【详解】
解:∵
∴
又∵
∴
故答案为
【点睛】
此题考查了对顶角以及平行线的性质,熟练掌握相关基本性质是解题的关键.
13.##BC//DE
【解析】
【分析】
由平分,可得,再根据同旁内角互补两直线平行可得结论.
【详解】
解:平分,,
∴=2=110°,
,
∴∠C+∠CDE=70°+110°=180°,
.
故答案为:.
【点睛】
本题考查了角的平分线的性质,平行线的判定,熟练的掌握平行线的判定方法是解题关键.
14.
【解析】
【分析】
根据平行线的性质可得,根据平分线的性质可得,进而即可求得的度数.
【详解】
,
,
平分,,
,
故答案为:
【点睛】
本题考查了平行线的性质,角平分线的定义,掌握平行线的性质是解题的关键.
15.120
【解析】
【分析】
过点B作BF∥CD,因为AB⊥AE,可得∠ABF=90°,即可得出∠FBC的度数,再由BF∥CD,可得∠FBC+∠BCD=180°,代入计算即可得出答案.
【详解】
解:过点B作BF∥CD,如图,
由题意可知,∠ABF=90°,
∵∠ABC=150°,
∴∠FBC=∠ABC-∠ABF=150°-90°=60°,
∵BF∥CD,
∴∠FBC+∠BCD=180°,
∴∠BCD=180°-∠FBC=180°-60°=120°.
故答案为:120.
【点睛】
本题主要考查了平行线的性质,熟练应用平行线的性质进行求解是解决本题的关键.
16.
【解析】
【分析】
先过作,根据,得出,再根据平行线的性质,得出,,进而得到;先根据和的平分线交点为,运用图①的结论,得出;同理可得;根据和的平分线,交点为,得出;据此得到规律,最后求得的度数即可.
【详解】
解:如图①,过作,
,
,
,,
,
,
由此可得:
如图②,和的平分线交点为,
,
和的平分线交点为,
,
和的平分线,交点为,
,
以此类推,,
∴,
当时,.
故答案为:.
【点睛】
本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
17.;两直线平行,内错角相等;;;;;同位角相等,两直线平行;两直线平行,同旁内角互补.
【解析】
【分析】
根据平行线的性质与判定,角平分线的意义,补全证明过程即可.
【详解】
(理由:两直线平行,内错角相等),
平分,
,
.
,
,
(理由:同位角相等,两直线平行).
(理由:两直线平行,同旁内角互补).
【点睛】
本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键.
18.见解析
【解析】
【分析】
由AB∥DC可得到∠A与∠D的关系,再由∠CEF+∠BOD=180°可得到∠CEF=∠COD,根据平行线的判定定理可得EF∥AD,可得∠D与∠EFC的关系,等量代换可得结论.
【详解】
证明:∵AB∥CD,
∴∠A=∠D,
∵∠CEF+∠BOD=180°,∠BOD+∠DOC=180°,
∴∠CEF=∠DOC.
∴EF∥AD.
∴∠EFC=∠D,
∵∠A=∠D,
∴∠EFC=∠A.
【点睛】
本题考查了平行线的判定和性质,掌握平行线的性质和判定方法是解决本题的关键.
19.见详解.
【解析】
【分析】
过点C作CF∥AB,可得∠B=∠BCF,根据平行同一直线的两直线平行,得出CF∥DE,进而得出∠D=∠DCF,利用角的和计算即可.
【详解】
证明:过点C作CF∥AB,
∴∠B=∠BCF,
∵DE//AB.CF∥AB,
∴CF∥DE,
∴∠D=∠DCF,
∴∠BCD=∠BCF+∠DCF=∠B+∠D.
【点睛】
本题考查平行线的性质与判定,掌握平行线性质与判定是解题关键.
20.(1)见解析
(2)30°
【解析】
【分析】
(1)根据EFAB,可得∠BDE=∠DEF,又∠DEF=∠A等量代换可得∠BDE=∠A,进而可得DEAC;
(2)根据(1)的结论可得,根据角平分线的定义即可求得∠ACD的度数.
(1)
∵EFAB,
∴∠BDE=∠DEF,
又∠DEF=∠A
∴∠BDE=∠A,
∴DEAC;
(2)
DEAC,∠BED=60°,
CD平分∠ACB,
【点睛】
本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键.
21.(1)见解析
(2)54°
【解析】
【分析】
(1)由平行线的性质可得,等量代换可得,从而,然后根据根据平行线的传递性可证结论成立;
(2)过点G作GM∥AB,由平行线的性质可得∠DCG=∠CGM,再由已知条件及角的和差关系可得答案.
(1)
证明:,
,
,,
∴,
,
,
.
(2)
解:如图,过点作,
,
由(1)知,,
,
,
,,
,,
,
,
,即.
【点睛】
本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)