2021——2022学年度人教版八年级数学下册 第十八章平行四边形 18.2 特殊的平行四边形 课后练习
一、选择题
1.判断一个四边形门框是否为矩形.下面是4位同学拟定的方案,其中正确的是( )
A.测量对角线是否互相平分 B.测量一组对角是否都为直角
C.测量对角线长是否相等 D.测量3个角是否为直角
2.菱形ABCD的边长为5,一条对角线长为6,则菱形面积为( )
A.20 B.24 C.30 D.48
3.下列关于的叙述,正确的是( )
A.若,则是矩形 B.若,则是正方形
C.若,则是菱形 D.若,则是正方形
4.已知菱形两条对角线的长分别为8和10,则这个菱形的面积是( )
A.20 B.40 C.60 D.80
5.菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
6.如图,菱形ABCD的面积为24cm2,对角线BD长6cm,点O为BD的中点,过点A作AE⊥BC交CB的延长线于点E,连接OE,则线段OE的长度是( )
A.3cm B.4cm C.4.8cm D.5cm
7.如图,正方形ABCD的两条对角线AC,BD相交于点O,点E在BD上,且BE=AD,则∠ACE的度数为( )
A.22.5° B.27.5° C.30° D.35°
8.如图,在边长为的正方形ABCD中,点E是对角线AC上一点,且于点F,连接DE,当时,( )
A.1 B. C. D.
9.如图,在的两边上分别截取,,使;再分别以点A,B为圆心,长为半径作弧,两弧交于点C;再连接AC,BC,AB,OC.若,,则四边形的面积是( )
A. B.8 C.4 D.
10.如图,长方形OABC中,点A在y轴上,点C在x轴上.,.点D在边AB上,点E在边OC上,将长方形沿直线DE折叠,使点B与点O重合.则点D的坐标为( )
A. B. C. D.
二、填空题
11.已知一个直角三角形的两直角边长分别为 5cm 和 12 cm,则斜边上中线的长度是________cm.
12.如图,正方形ABCD的边长为4,E是BC的中点,在对角线BD上有一点P,则PC+PE的最小值是_______.
13.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,且顶点B的坐标是(1,2),如果以O为圆心,OB长为半径画弧交x轴的正半轴于点P,那么点P的坐标是_______.
14.如图,点E是矩形ABCD边AD上一点,点F,G,H分别是BE,BC,CE的中点,AF=6,则GH的长为_________.
15.如图,E是正方形ABCD的对角线BD上一点,连接CE,过点E作,垂足为点F.若,,则正方形ABCD的面积为______.
三、解答题
16.已知:如图,菱形ABCD中,∠B=60°,点E,F在边BC,CD上,且∠EAF=60°;求证:AE=AF.
17.已知:菱形ABCD的对角线AC,BD交于点O,CE∥OD,DE∥OC.求证:四边形OCED是矩形.
18. “三等分一个任意角”是数学史上一个著名问题.今天人们已经知道,仅用圆规和直尺是不可能作出的.有人曾利用如图所示的图形进行探索,其中ABCD是长方形,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F.请写出∠ECB和∠ACB的数量关系,并说明理由.
19.如图,在平行四边形ABCD中,BE⊥AD,BF⊥CD,垂足分别为E,F,且AE=CF.
(1)求证:平行四边形ABCD是菱形;
(2)若DB=10,AB=13,求平行四边形ABCD的面积.
20.如图,AM//BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D, DE⊥BD,交BN于点E.
(1)求证:四边形ABCD是菱形.
(2)若DE=AB=2,求菱形ABCD的面积.
21.如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,,M关于直线AF对称.
(1)求证:B,M关于AE对称;
(2)若的平分线交AE的延长线于G,求证:.
22.如图,四边形ABCD是长方形,把△ACD沿AC折叠得到△ACD’,AD’与与BC交于点E,若AD=4,DC=3
(1)求证
(2)求BE的长
23.如图,正方形中,点分别在边上,且,连接相交于点,作,垂足是.
(1)求证:;
(2)求证:.
【参考答案】
1.D 2.B 3.A 4.B 5.B 6.B 7.A 8.C 9.C 10.C
11.
12.
13.(,0)
14.6
15.49
16.解:证明:连接AC,如图,
∵四边形ABCD为菱形,
∴AB=BC,
∵∠B=60°,
∴△ABC为等边三角形,
∴∠2=60°,∠1+∠4=60°,AC=AB,
∴∠ACF=60°,
∵∠EAF=60°,即∠3+∠4=60°,
∴∠1=∠3,
在△AEB和△AFC中,
,
∴△AEB≌△AFC,
∴AE=AF.
17.证明:∵CE∥OD,DE∥OC,
∴四边形OCED是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠DOC=90°,
∴平行四边形OCED是矩形.
18.解:∠ACB=3∠ECB.
理由如下:在△AGF中,∠AGC=∠F+∠GAF=2∠F.
∵∠ACG=∠AGC,
∴∠ACG=2∠F.
∵AD//BC,
∴∠ECB=∠F.
∴∠ACB=∠ACG+∠BCE=3∠F.
故∠ACB=3∠ECB.
19.(1)证明:∵四边形ABCD是平行四边形,
∴,
∵,,
∴,
在和中,
,
∴,
∴,
∴平行四边形ABCD是菱形;
(2)解: 如图所示:连接AC,交BD于点H,
∵四边形ABCD是菱形,
∴,
∵,,
∴,
在中,
,
∴,
∴平行四边形ABCD的面积为:.
20.(1)解:证明:∵点O是AC的中点,
∴AO=CO,
∵AM∥BN,
∴∠DAC=∠ACB,
在△AOD和△COB中,
,
∴△ADO≌△CBO(ASA),
∴AD=CB,
又∵AM∥BN,
∴四边形ABCD是平行四边形,
∵AM∥BN,
∴∠ADB=∠CBD,
∵BD平分∠ABN,
∴∠ABD=∠CBD,
∴∠ABD=∠ADB,
∴AD=AB,
∴平行四边形ABCD是菱形;
(2)由(1)得四边形ABCD是菱形,
∴AC⊥BD,AD=CB,
又DE⊥BD,
∴AC∥DE,
∵AM∥BN,
∴四边形ACED是平行四边形,
∴AC=DE=2,AD=EC,
∴EC=CB,
∵四边形ABCD是菱形,
∴EC=CB=AB=2,
∴EB=4,
在Rt△DEB中,由勾股定理得BD=,
∴S菱形ABCD=AC BD==.
解:连结AM,DM,BM,
∵D、M关于直线AF对称,
∴AF垂直平分DM,
∴AD=AM,FD=FM,
∴△DAF≌△MAF,
∴∠AMF=∠ADF=∠AME=∠ABE=90°,AM=AB,AE=AE,
∴△BAE≌△MAE,
∴EM=EB,
∴AE垂直平分BM,
∴B、M关于AE对称;
(2)由(1)知△BAE≌△MAE,
∴AE平分∠BEF,
∴∠EAF=∠BAD=45°,
又AF平分∠DFE,FG平分∠EFC,
∴∠AFG=90°.
∴△AFG为等腰直角三角形,
∴.
22.(1)由翻折和长方形的性质可知,,
又∵(对顶角).
∴ .
(2)设BE=x,则EC=4-x.
由(1)得AE=EC=4-x,
在中,,即.
解得:x=.
故BE=.
23.(1)四边形是正方形,
,
又,
,
在和中,
,
,
,
,
;
(2)由(1)知,
,
,
又,
,