(共19张PPT)
17.2 勾股定理的逆定理
D
B
等腰直角三角形
96
∵AC = =1 +1 =2,BC == 3 +3 = 18,AB = =2 +4 = 20,AC +BC =AB ,∴▲ABC是直角三角形.
B
13,84,85
A
A
B
D
∠AEF=90°.
证明:设AB= BC= CD=AD=4a,
则BE=CE=2a,CF=a,DF=3a,
由勾股定理,得
AE =(4a) +(2a) =20a ,
EF=(2a) +a =5a ,
AF =(4a) +(3a )=25a .
在△AFF中,∵AE +EF =AF ∴∠AEF=90°.
C
2
180°
解:设AB=AC=x cm,则AD=(x-12)cm,
在▲BCD中,
∵BD +CD =12 十16 =400,BC =20 =400,
∴BD +CD =BC .
∴∠BDC=90°.∴CD AB.∴∠ADC=90°.
在Rt▲ACD中,由勾股定理,得
AD +CD =AC 即(x-12) 十16 =x ,
∴x=50/3.
∴SΔABC=1/2 AB CD=1/2×50/3×16=400/3(cm )
解:由题意可得
AC=15×4=60(n mile),AB=20X4=80(n mile)∵AC +AB =60 +80 =10 000= BC
∴▲BAC是直角三角形,180°-40°-90°=50°且∠BAC=90°,∴乙船航行的方向是南偏东50°
解:(1)连接CE.
∵DE垂直平分BC,∴BE=CE,
设AE=x,
则BE=CE=4-x,在Rt▲ACE中,AE 十AC =CE
x 十3 (4-x) .∴x=7/8,即AE=7/8.
(2)设 BD=y,则 CD=y,在Rt▲ABF中,AF =AB -BF =4 -(y+0.7) ,
在Rt▲ACF中,
AF =AC -CF =3 -(y-0.7) ,
∴4 -(y+0.7) =3 -(y-0.7) .
∴y=2.5.∴BC=2y=5.
∵AB +AC =4 +3 =25,BC =5 =25,∴AB +AC =BC ,∴▲ABC为直角三角形.