2022年人教版八年级数学 下册 18.2.2 菱形 课件 (2课时,2份打包)

文档属性

名称 2022年人教版八年级数学 下册 18.2.2 菱形 课件 (2课时,2份打包)
格式 zip
文件大小 1.6MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-02-18 15:32:47

文档简介

(共37张PPT)
温故知新
1.什么是矩形?
2.矩形的性质有哪些?
3.矩形的判定方法有哪些?
下面各图片,是什么图形?
导入新课
平行四边形的角特殊化得到特殊的平行四边形——矩形;
平行四边形的边特殊化,我们得到的特殊的平行四边形是什么,它有什么特征?
大胆猜想
18.2.2 菱 形
人教版八年级数学 下册
第1课时 菱形的性质
学习目标
1.了解菱形的概念及其与平行四边形的关系。
2.探索并证明菱形的性质定理。
3.应用菱形的性质定理解决相关计算或证明问题。
  
  你能举出生活中的菱形的实际例子吗?
  追问:你能画出一个菱形吗?
目标导学一:菱形的性质
  菱形是特殊的平行四边形,因此它具有平
行四边形的所有性质.类似于矩形,菱形是否
也具有一般平行四边形不具有的特殊性质?如
果有,是什么?
如果从边的角度,将平行四边形特殊化,内角大小保持不变仅改变边的长度让它有一组邻边相等,这个特殊的平行四边形叫什么呢
平行四边形
定义:有一组邻边相等的平行四边形.
菱形
邻边相等
菱形是特殊的平行四边形.
平行四边形不一定是菱形.
合作交流
知识归纳
画出菱形的两条折痕,并通过折叠手中的图形回答以下问题:
1.菱形是轴对称图形吗?
2.菱形有几条对称轴?
3.对称轴之间有什么关系?
4.你能看出图中哪些线段和角相等?
合作交流
相等的线段:
相等的角:
等腰三角形有:
直角三角形有:
全等三角形有:
菱形ABCD中,
AB=CD=AD=BC
OA=OC,OB=OD
∠DAB=∠BCD , ∠ABC =∠CDA
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠1=∠2=∠3=∠4,∠5=∠6=∠7=∠8
△ABC , △ DBC , △ACD,△ABD
Rt△AOB, Rt△BOC ,Rt△COD, Rt△DOA
Rt△AOB ≌Rt△BOC≌Rt△COD ≌Rt△DOA
△ABD≌△CBD ,△ABC≌△ADC
合作交流
菱形是特殊的平行四边形,具有平行四边形的所有性质.
由此我们可以得到菱形的性质:
菱形是轴对称图形, 对称轴有两条,是菱形两条对角线所在的直线.
猜想菱形的四条边在数量上有什么关系 菱形的两条对角线有什么关系
猜想1 菱形的四条边都相等.
猜想2 菱形的两条对角线互相垂直,并且每一条对
角线平分一组对角.
知识归纳
已知:如图,在平行四边形ABCD中,AB=AD,对角线AC与BD相交于点O.
求证:(1)AB = BC = CD =AD;
(2)AC⊥BD;
∠DAC=∠BAC,∠DCA=∠BCA,
∠ADB=∠CDB,∠ABD=∠CBD.
证明:(1)∵四边形ABCD是平行四边形,
∴AB = CD,AD = BC(平行四边形的对边相等).
又∵AB=AD,
∴AB = BC = CD =AD.
A
B
C
O
D
证明猜想
(2)∵AB = AD,
∴△ABD是等腰三角形.
又∵四边形ABCD是平行四边形,
∴OB = OD (平行四边形的对角线互相平分).
在等腰三角形ABD中,
∵OB = OD,
∴AO⊥BD,AO平分∠BAD,
即AC⊥BD,∠DAC=∠BAC.
同理可证∠DCA=∠BCA,
∠ADB=∠CDB,∠ABD=∠CBD.
A
B
C
O
D
证明猜想
BY YUSHEN
菱形常用的判定方法:
有一组邻边相等的平行四边形叫做菱形.
对角线互相垂直的平行四边形是菱形.
对角线互相垂直平分的四边形是菱形.
有四条边相等的四边形是菱形.
知识归纳
对边相等
四个角都是直角
对角线互相
平分且相等
四边相等
对角相等
两条对角线互相垂
直平分,并且每一
条对角线平分一组
对角
平行四边形的性质
矩形的性质
菱形的性质
对边相等
对角相等
对角线互相平分
比一比,填写下表:
深入探究
例1 如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=12cm,AC=6cm,求菱形的周长.
解:∵四边形ABCD是菱形,
∴AC⊥BD,
AO= AC,BO= BD.
∵AC=6cm,BD=12cm,
∴AO=3cm,BO=6cm.
在Rt△ABO中,由勾股定理得
∴菱形的周长=4AB=4×3 =12 (cm).
精典例题
例2 如图,在菱形ABCD中,CE⊥AB于点E,CF⊥AD于点F,求证:AE=AF.
证明:连接AC.
∵四边形ABCD是菱形,
∴AC平分∠BAD,
即∠BAC=∠DAC.
∵CE⊥AB,CF⊥AD,
∴∠AEC=∠AFC=90°.
又∵AC=AC,
∴△ACE≌△ACF.
∴AE=AF.
菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角.
规律
例3 如图,E为菱形ABCD边BC上一点,且AB=AE,AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.
A
B
C
D
O
E
证明:∵四边形ABCD为菱形,
∴AD∥BC,AD=BA,
∠ABC=∠ADC=2∠ADB ,
∴∠DAE=∠AEB,
∵AB=AE,∴∠ABC=∠AEB,
∴∠ABC=∠DAE,
∵∠DAE=2∠BAE,∴∠BAE=∠ADB.
又∵AD=BA ,
∴△AOD≌△BEA ,
∴AO=BE .
1.如图,在菱形ABCD中,已知∠A=60°,AB=
5,则△ABD的周长是 (  )
A.10 B.12 C.15 D.20
C
2.如图,菱形ABCD的周长为48cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为_______.
第1题图
第2题图
6cm
即学即练
思考:菱形是特殊的平行四边形,那么能否利用平行四边形面积公式计算菱形ABCD的面积吗
A
B
C
D
猜想:前面我们已经学习了菱形的对角线互相垂直,那么能否利用对角线来计算菱形ABCD的面积呢
能.过点A作AE⊥BC于点E,
则S菱形ABCD=底×高
=BC·AE.
E
目标导学二:菱形的面积
如图,四边形ABCD是菱形,对角线AC,BD交于点O,试用对角线表示出菱形ABCD的面积.
A
B
C
D
O
解:∵四边形ABCD是菱形,
∴AC⊥BD,
∴S菱形ABCD=S△ABC +S△ADC
= AC·BO+ AC·DO
= AC(BO+DO)
= AC·BD.
你有什么发现?
菱形的面积 = 底×高 = 对角线乘积的一半
合作探究
例4 如图,在菱形ABCD中,点O为对角线AC与BD的交点,且在△AOB中,OA=5,OB=12.求菱形ABCD两对边的距离h.
解:在Rt△AOB中,OA=5,OB=12,
∴S△AOB= OA·OB= ×5×12=30,
∴S菱形ABCD=4S△AOB=4×30=120.

又∵菱形两组对边的距离相等,
∴S菱形ABCD=AB·h=13h,
∴13h=120,得h= .
菱形的面积:
(1)面积=底×高
(2)面积=两条对角线的长的乘积的一半
S菱形ABCD= AC · BD
方法归纳
例5 如图,菱形花坛ABCD的边长为20m,∠ABC=60°,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的长和花坛的面积(结果分别精确到0.01m和0.1m2 ).
A 
B 
C 
D 
O 
解:∵花坛ABCD是菱形,
精典例题
例6.四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=5,AO=4. 求AC和BD的长.
解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=CO,BO=DO,
∴△ABO是直角三角形,
∴BO= =3
∴AC=2AO=8,BD=2BO=6
精典例题
菱形ABCD的两条对角线BD、AC长分别是6cm和8cm,求菱形的周长和面积.
解:菱形的边长= =5.
C菱形ABCD= 4×5=20(cm)
(cm)
即学即练
三个角是直角 
四条边都相等  
一个角是直角 
对角线相等  
一组邻边相等  
对角线互相垂直   
两组对边分别平行 
一组对边平行且相等
两组对边分别相等 
两组对角分别相等
对角线互相平分 
四边形  
平行四边形  
矩形  
菱形  
比较探究
菱形的性质
菱形的性质
有关计算

1.周长=边长的四倍
2.面积=底×高=两条对角线乘积的一半

对角线
1.两组对边平行且相等;
2.四条边相等
两组对角分别相等,邻角互补邻角互补
1.两条对角线互相垂直平分;
2.每一条对角线平分一组对角
课堂小结
1.如图,已知菱形的两条对角线长分别为6cm和8cm,则这个菱形的高DE为(  )
A.1.2cm B.2.4cm
C.4.8cm D.10cm
检测目标
C
2.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是(  )
A. 1   B.2    C. 3   D. 4
B
检测目标
3.如图所示,把一张矩形纸片按如图所示对折两次,然后剪下一部分,若得到一个钝角为120°的菱形,则剪口与第二次折痕所成角的度数应为(   )
A.30°或60° B.30°或50°
C.40°或60° D.50°或60°
A
检测目标
4.如图,在菱形ABCD中,对角线AC、BD相交于点O,OC=3,OD=4,则菱形ABCD的面积为( )
A.12 B.18 C.24 D.30
C
检测目标
5.菱形的两条对角线的长的比为3∶4,面积为24cm2,求菱形的周长.
解:设一条对角线长为3x,则另一条对角线长为4x,
S= ×3x·4x=24,∴x=2.
边长= =5.
∴菱形的周长=4×5=20(cm).
检测目标
6.如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求OC的长;
(2)求四边形OBEC的面积.
解:(1)∵四边形ABCD是菱形,∴AC⊥BD.
在RT△OCD中,由勾股定理得OC=4cm;
(2)∵CE∥DB,BE∥AC,
∴四边形OBEC为平行四边形.
又∵AC⊥BD,即∠COB=90°,
∴平行四边形OBEC为矩形.
∵OB=OD=3cm,
∴S矩形OBEC=OB·OC=4×3=12(cm2).
检测目标
说说这节课你学到了什么
有什么体会
有什么感想
收获园地
作 业 :
1.完成同步练习题
2.背诵知识点(共31张PPT)
温故知新
1.什么是菱形?
2.菱形的性质有哪些?
3.菱形的面积计算方法?
一组邻边相等
有一组邻边相等的平行四边形叫做菱形
平行四边形
菱形的性质
菱形
两组对边平行
四条边相等
两组对角分别相等
邻角互补
两条对角线互相垂直平分
每一条对角线平分一组对角


对角线
温故知新
18.2.2 菱 形
人教版八年级数学 下册
第2课时 菱形的判定
学习目标
 1.经历菱形判定定理的探究过程,掌握菱形的判定定理。
2.会用这些菱形的判定方法进行有关的证明和计算。
根据菱形的定义,可得菱形的第一个判定的方法:
AB=AD,
∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
数学语言
有一组邻边相等的平行四边形叫做菱形.
A
B
C
D
想一想:还有其他的判定方法吗?
  如图,用一长一短两根木条,在它们的中点处固定
一个小钉,做成一个可转动的十字,四周围上一根橡皮 
筋,做成一个四边形.转动木条,这个四边形什么时候
变成菱形?请说明理由.
目标导学一:对角线互相垂直的平行四边形是菱形
已知:四边形ABCD 是平行四边形,且AC⊥BD,
求证:平行四边形ABCD 是菱形.
证明:∵四边形ABCD是平行四边形,
∴AO=CO,又∵AC⊥BD,
∴AB=BC(线段垂直平分线上
的点到两个端点的距离相等)
∴ 四边形ABCD是菱形.(菱形的定义)
证明猜想
对角线互相垂直的平行四边形是菱形
AC⊥BD
几何语言描述:
∵在□ABCD中,AC⊥BD,
∴ □ABCD是菱形.
A
B
C
D
菱形ABCD
A
B
C
D
□ABCD
菱形的判定定理:
知识归纳
例1 如图, 四边形 ABCD的对角线AC、BD相交于点O,
AB=5,AO=4,BO=3.
求证: 四边形ABCD是菱形.
证明:∵AB=5,AO=4,BO=3,
∴AB2=AO2+BO2.
∴△OAB是直角三角形, AC⊥ BD.
∴ ABCD是菱形.
精典例题
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.
A
B
C
D
E
F
O
1
2
证明: ∵四边形ABCD是矩形,
∴AE∥FC,∴∠1=∠2.
∵EF垂直平分AC,
∴AO = OC .
又∠AOE =∠COF,
∴△AOE≌△COF,∴EO =FO.
∴四边形AFCE是平行四边形.
又∵EF⊥AC
∴ 四边形AFCE是菱形.
精典例题
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=5,OA=4,OB=3.
求证:四边形ABCD是菱形.
证明:∵AB=5,OA=4,OB=3,
∴AB2=AO2+BO2,
∴△ABO为直角三角形,
∴______________,
∵四边形ABCD为平行四边形,
∴四边形ABCD为菱形.
(依据:___________________________________)
AC⊥BD
对角线互相垂直的平行四边形是菱形
即学即餐
A 
B 
C 
D 
  如图,先画两条等长的线段AB,AD,然后分别以
B,D为圆心,AB长为半径画弧,两弧交点为C,连接
BC,CD.得到的四边形ABCD是菱形吗?请说明理由.
目标导学二:四条边相等的四边形是菱形
证明:∵AB=BC=CD=AD;
∴AB=CD , BC=AD.
∴四边形ABCD是平行四边形.
又∵AB=BC,
∴四边形ABCD是菱形.
A
B
C
D
已知:如图,四边形ABCD中,AB=BC=CD=AD.
求证:四边形ABCD是菱形.
证明猜想
四条边都相等的四边形是菱形
AB=BC=CD=AD
几何语言描述:
∵在四边形ABCD中,AB=BC=CD=AD,
∴四边形 ABCD是菱形.
A
B
C
D
菱形ABCD
菱形的判定定理:
四边形ABCD
A
B
C
D
知识归纳

菱形的
定义
一组邻边相等的平行四边形叫做菱形 
菱形的
性质
具有平行四边形的所有性质
对角线互相垂直且平分每一组对角 
菱形的四条边都相等 
菱形的
判定
C 
D 
A 
B 
O 
一组邻边相等的平行四边形是菱形
对角线互相垂直的平行四边形是菱形
四边都相等的四边形是菱形
知识归纳
如图所示,下列条件中能说明四边形ABCD是菱形的有( )
②OA=OC,OB=OD,AB=BC;
①BD⊥AC
③AC=BD,
④AB=BC,AB∥CD
A.① B. ② C. ①② D ③④
B
A
B
C
D
O
即学即练
例4 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.
证明:由平移变换的性质得CF=AD=10cm,DF=AC.
∵∠B=90°,AB=6cm,BC=8cm,
∴AC=DF=AD=CF=10cm,
∴四边形ACFD是菱形.
四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.
规律
精典例题
例5.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BO平分∠ABC,且交AE于点D,连接CD,求证:四边形ABCD是菱形.
证明:∵AE∥BF,∴∠EAC=∠ACB.
又∵AC平分∠BAD,
∴∠ACB=∠BAC=∠EAC,∴AB=BC.
同理:AB=AD,∴AD=BC,而AD∥BC.
∴四边形ABCD是平行四边形.又AB=AD,
∴平行四边形ABCD是菱形.
精典例题
H
G
F
E
D
C
B
A
证明:连接AC、BD.
∵四边形ABCD是矩形,
∴AC=BD.
∵点E、F、G、H为各边中点,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
例6 如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.
精典例题
C
A
B
D
E
F
G
H
如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?
解:四边形EFGH是菱形.
又∵AC=BD,
∵点E、F、G、H为各边中点,
∴EF=FG=GH=HE,
∴四边形EFGH是菱形.
顺次连接对角线相等的四边形的各边中点,得到四边形是菱形.
规律
理由如下:连接AC、BD
变式练习
例7 如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(1)证明:∵D、E分别是AB、AC的中点,
∴DE∥BC且2DE=BC.
又∵BE=2DE,EF=BE,
∴EF=BC,EF∥BC,
∴四边形BCFE是平行四边形.
又∵EF=BE,
∴四边形BCFE是菱形;
目标导学三:菱形的性质与判定的综合运用
(2)解:∵∠BCF=120°,
∴∠EBC=60°,
∴△EBC是等边三角形,
∴菱形的边长为4,高为 ,
∴菱形的面积为 .
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.
规律
有一组邻边相等的平行四边形是菱形.
对角线互相垂直的平行四边形是菱形.
四边相等的四边形是菱形.
运用定理进行计算和证明
菱形的判定
定义法
判定定理
课堂小结
1.一边长为5cm平行四边形的两条对角线的长分别为24cm和26cm,那么这个平行四边形的面积是( )
A.156cm2 B.256cm2
C.312cm2 D.365cm2
检测目标
C
2.在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是(   )
A.AB∥CD
B.∠ABC=90°
C.AC⊥BD
D.AB=CD
C
检测目标
3.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是(  )
A.∠B=60° B.AB=BC
C.AC=BC D.∠ACB=60°
C
检测目标
A
B
C
D
E
F
G
H
4.如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?
解:连接AC、BD.
∵点E、F、G、H为各边中点,
∴四边形EFGH是平行四边形.
检测目标
证明:∵MN是AC的垂直平分线,
∴AE=CE,AD=CD,OA=OC,
∠AOD=∠EOC=90°.
∵CE∥AB,
∴∠DAO=∠ECO,
∴△ADO≌△CEO(ASA).
∴AD=CE,OD=OE,
∵OD=OE,OA=OC,
∴四边形ADCE是平行四边形
又∵∠AOD=90°,∴四边形ADCE是菱形.
5.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.
B
C
A
D
O
E
M
检测目标
说说这节课你学到了什么
有什么体会
有什么感想
收获园地
作 业 :
1.完成同步练习题
2.背诵知识点