(共28张PPT)
如图,在下列各题中,再添上一个条件使结论成立:
(1)∵ AB∥CD, ,
∴ 四边形ABCD是平行四边形.
(2)∵ AB=CD, ,
∴ 四边形ABCD是平行四边形.
如果只考虑一组对边,
它们满足什么条件时,这
个四边形能成为平行四边
形?
AD∥BC
AD=BC
A
B
C
D
导入新课
18.1.2 平等四边形的判定
人教版八年级数学 下册
第2课时 平行四边形的判定(2)
学习目标:
1.探究平行四边形的第四个判定定理。
2. 会综合运用平行四边形的性质和判定进行推理和计算。
问题 我们知道,两组对分别平行或相等的是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?
猜想1:一组对边相等的四边形是平行四边形.
等腰梯形不是平行四边形,因而此猜想错误.
猜想2:一组对边平行的四边形是平行四边形.
梯形的上下底平行,但不是平行四边形,因而此猜想错误.
目标导学一:一组对边平行且相等的四边形是平行四边形
B
A
活动 如图,将线段AB向右平移BC长度后得到线段 CD,连接AD,BC,由此你能猜想四边形ABCD的形状吗?
D
C
四边形ABCD是平行四边形
猜想3:一组对边平行且相等的四边形是平行四边形.
你能证明吗?
A
B
C
D
证明思路
作对角线构造全等三角形
一组对应边相等
两组对边分别相等
四边形ABCD是平行四边形
如图,在四边形ABCD中,AB=CD且AB∥CD,
求证:四边形ABCD是平行四边形.
验证猜想
A
B
C
D
1
2
从上面的问题中我们可以抽取出如下题目:
已知 AB∥CD,AB=CD,试说明四边形ABCD是平行四边形.
解:方法1:连接AC,
∵ AB∥CD, ∴ ∠1=∠2.
又∵ AB=CD, AC=CA,
∴ △ABC≌△CDA,
∴ BC=AD,
∴四边形ABCD是平行四边形.
验证猜想
∵AB //CD ,
∴∠1=∠2 .
又 ∵AB =CD ,
AC =CA ,
∴△ABC≌△CDA .
∴∠BCA=∠DAC .
∴AD //BC .
∴四边形ABCD是平行四边形.
方法2:如图,连接 AC.
验证猜想
一组对边平行且相等的四边形是平行四边形
平行四边形的判定定理:
符号语言:
∵AB CD
∴四边形ABCD是平行四边形.
A
B
C
D
知识要点
两组对边分别平行的四边形是平行四边形;
两组对边分别相等的四边形是平行四边形;
一组对边平行且相等的四边形是平行四边形.
从角考虑 两组对角分别相等的四边形是平行四边形.
从对角线考虑 对角线互相平分的四边形是平行四边形.
从边
考虑
判定一个四边形是平行四边形可从哪些角度思考?
具体有哪些方法?
知识归纳
文字语言 图形语言 几何语言
判定
方法1
定义法
判定方法2
判定方法3
A
B
C
D
A
B
C
D
A
B
C
D
O
A
B
C
D
两组对边分别平行的四边形是平行四边形
∵AB//CD, AD//BC,
∴四边形ABCD是
平行四边形
∵AB=CD,AD=BC,
∴四边形ABCD是
平行四边形
∵ ∠ A= ∠ C,
∠ B= ∠ D,
∴四边形ABCD是
平行四边形
∵AO=CO,BO=DO,
∴四边形ABCD是
平行四边形
两组对角分别相等的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
判定方法4
一组对边平行且相等的四边形是平行四边形
A
B
C
D
∵AB//CD, AB=CD,
∴四边形ABCD是
平行四边形
平行四边形的判定方法
证明:∵四边形ABCD是平行四边形,
∴AB =CD,EB //FD.
又 ∵EB = AB ,FD = CD,
∴EB =FD .
∴四边形EBFD是平行四边形.
例1 如图 ,在平行四边形ABCD中,E,F分别是AB,CD的中点.
求证:四边形EBFD是平行四边形.
精典例题
例2 如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,AE=DF,∠A=∠D,AB=DC.求证:四边形BFCE是平行四边形.
证明:∵AB=CD,
∴AB+BC=CD+BC,即AC=BD,
在△ACE和△DBF中,
AC=BD ,∠A=∠D, AE=DF ,
∴△ACE≌△DBF(SAS),
∴CE=BF,∠ACE=∠DBF,
∴CE∥BF,
∴四边形BFCE是平行四边形.
精典例题
如图,点C是AB的中点,AD=CE,CD=BE.
(1)求证:△ACD≌△CBE;
(2)求证:四边形CBED是平行四边形.
证明:(1)∵点C是AB的中点,∴AC=BC.
在△ADC与△CEB中,
AD=CE , CD=BE , AC=BC ,
∴△ADC≌△CEB(SSS),
(2)∵△ADC≌△CEB,
∴∠ACD=∠CBE,
∴CD∥BE.
又∵CD=BE,
∴四边形CBED是平行四边形.
变式练习
例3. 已知:如图, ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.
求证:四边形BEDF是平行四边形.
┓
┓
A
B
C
D
E
F
证明:∵ 四边形ABCD是平行四边形,
∴ AB=CD,且AB∥CD.
∴ ∠BAE=∠DCF.
∵ BE⊥AC于E,DF⊥AC于F,
∴ BE∥DF,且∠BEA=∠DFC=90°.
∴ △ABE≌△CDF (AAS).
∴ BE=DF.
∴ 四边形BEDF是平行四边形(一组对边平行且相等的四边形平行四边形).
例4 如图,△ABC中,BD平分∠ABC,DF∥BC,EF∥AC,试问BF与CE相等吗?为什么?
解:BF=CE.理由如下:
∵DF∥BC,EF∥AC,
∴四边形FECD是平行四边形,∠FDB=∠DBE,
∴FD=CE.
∵BD平分∠ABC,
∴∠FBD=∠EBD,
∴∠FBD=∠FDB.
∴BF=FD.
∴BF=CE.
目标导学二:平行四边形的性质与判定的综合运用
例5. 如图,在 ABCD中,E,F分别是AB,CD的中点,连接DE,EF,BF,写出图中除 ABCD以外的所有的平行四边形.
解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵E,F分别是AB,CD的中点,
∴AE=BF=DE=FC,
∴四边形ADFE是平行四边形,四边形EFCB是平行四边形,四边形BEDF是平行四边形.
O
已知:四边形ABCD, 对角线AC、BD相交于点O,且OA=OC,OB=OD
求证:四边形ABCD是平行四边形
证明:
在△AOD和△COB中
OA=OC(已知)
∠AOD=∠COB (对顶角相等)
OD=OB (已知)
∴△AOD≌△COB(SAS)
∴∠1=∠2 AD=CB(全等三角形的对应角、对应边相等)
∴ AD∥CB(内错角相等,两直线平行)
∴四边形ABCD是平行四边形
B
A
C
2
1
D
(一组对边平行且相等的四边形是平行四边形)
即学即练
两组对边分别平行的四边形是平行四边形
两组对边分别相等的四边形是平行四边形
一组对边平行且相等的四边形是平行四边形
边
角
两组对角分别相等的四边形是平行四边形
对角线互相平分的四边形是平行四边形
对角线
判定一个四边形是平行四边形的方法:
课堂小结
1、下面给出了四边形ABCD中 ∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )
A.1:2:3:4
C.2:3:2:3
B.2:2:3:3
D.2:3:3:2
需要两组对角分别相等.
C
检测目标
2、在下列条件中,能判定四边形ABCD为平行四边形的是( )
A.AB=AD,CB=CD
B.AB∥CD,AD=BC
D.∠A=∠B,∠C=∠D
C.AB=CD,AD=BC
A
B
C
D
C
若一组对边平行且相等,这个四边形是平行四边形吗?
检测目标
3.下列说法错误的是( )
A.对角线互相平分的四边形是平行四边形
B.两组对边分别相等的四边形是平行四边形
C.一组对边相等,另一组对边平行的四边形是平行四边形
D.一组对边平行且相等的四边形是平行四边形
检测目标
C
4.如图,在四边形ABCD中,
如果AD=8cm,AB=4cm,且BC=____cm,CD=____cm,那么四边形ABCD是平行四边形。
8
4
两组对边分别相等的四边形是平行四边形
A
B
C
D
检测目标
5.已知:如图,E,F分别是 的边AD,BC的中点。
求证:BE=DF.
D
F
E
C
B
A
证明:
∵四边形ABCD是平行四边形,
∴AB∥CD (平行四边形的定义)
AD=BC(平行四边形的对边分别相等),
∵E,F分别是AD,BC的中点,
∴ED=BF,即ED BF.
∥
﹦
∴四边形EBFD是平行四边形(一组对边 平行并且相等的四边形是平行四边形)。
∴BE=DF(平行四边形的对边分别相等)。
检测目标
说说这节课你学到了什么
有什么体会
有什么感想
收获园地
作 业 :
1.完成同步练习题
2.背诵知识点