一次函数的表达式的求法
教学目标
【知识与技能】
会用待定系数法求一次函数的表达式
【过程与方法】
通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.
【情感、态度与价值观】
体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.
教学重难点
【重点】
用待定系数法求一次函数的表达式.
【难点】
用待定系数法求一次函数的表达式.
教学过程
一、复习引入
1.提问:(1)什么是一次函数
(2)一次函数的图象是什么
(3)一次函数的相关性质.
2.做一做.
(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).
(2)点(-2,7)是否在直线y=-5x-3上
3.引入.
在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢 这就是我们今天要学习的内容——待定系数法求函数关系式.
二、讲授新课
师:下面我们来看几个例题.
【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.
【答案】设y=kx+b,根据题意,得
14.5=b,①
16=3k+b.②
将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.
师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.
【例2】某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.
(1)写出v与t之间的关系式;
(2)下滑3秒时物体的速度是多少
【答案】(1)设v=kt;∵点(2,5)在图象上,∴5=2k,k=2.5,∴v=2.5t
(2)当t=3时,v=2.5×3=7.5 m/s.
师:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤,求函数表达式的步骤有:
(1)设一次函数y=kx+b.
(2)根据已知条件列出有关方程.
(3)解方程.
(4)把求出的值代回到表达式中即可.
师:确定正比例函数的表达式需要几个条件 确定一次函数的表达式呢
生:正比例函数需要1个;一次函数需要2个.
【例3】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:
(1)油箱最多可储油多少升
(2)一箱汽油可供摩托车行驶多少千米
(3)摩托车每行驶100 km消耗多少升汽油
(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警
【答案】观察图象,得
(1)当x=0时,y=10.因此,油箱最多可储油10 L.
(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.
(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.
(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.
师:请同学们思考教材P92的“做一做”.
学生观察并思考.
生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.
师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗
学生思考并讨论.
教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.
三、课堂小结
师:通过本节课的学习,同学们有什么收获 与同伴交流一下.
学生发言,教师予以点评.