5.3.2命题、定理、证明 课件(共24张PPT)

文档属性

名称 5.3.2命题、定理、证明 课件(共24张PPT)
格式 pptx
文件大小 1.0MB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-02-21 10:28:28

图片预览

文档简介

(共24张PPT)
5.3.2 命题、定理、证明
第五章 相交线与平行线
2021-2022学年七年级数学下册(人教版)
1.理解命题,定理及证明的概念,会区分命题的题设和结论;(重点)
2. 会判断真假命题,知道证明的意义及必要性,了解反例的作用. (重点、难点)
学习目标
小花与小明正在津津有味地阅读一本科学类的图书.
这个黑客终于被逮住了.
是的,现在的互联网给我们的生活带来了, 但…….
这个黑客是个小偷.
是个喜欢穿黑衣服的贼.
坐在旁边的两个人一边听着他们的谈话,一边也在悄悄地议论着.
情境导入
小刚的百米成绩有进步,已达到9秒9.
好!继续努力,争取跑进9秒.
操场上,裁判员向老师汇报训练成绩.
情境导入
下列语句在表述形式上,有什么共同特点?
(1)如果两条直线都与第三条直线平行,那么这
两条直线也互相平行;
(2)两条平行线被第三条直线所截,同旁内角互补;
(3)对顶角相等;
(4)等式两边都加同一个数,结果仍是等式.
你的发现:这些语句都是对一件事情作出了判断.
观察与思考
2.如果一个句子没有对某一件事情作出任何判断,那么
它就不是命题.
如:画线段AB=CD.
1.只要对一件事情作出了判断,不管正确与否,都是命题.
如:相等的角是对顶角.
注意:
像这样判断一件事情的语句,叫作命题(proposition).
命题的定义与结构
一、命题的概念
探究新知
例1 判断下列四个语句中,哪个是命题, 哪个不是命题?并说明理由:
(1)对顶角相等吗?
(2)画一条线段AB=2cm;
(3)两条直线平行,同位角相等;
(4)相等的两个角,一定是对顶角.
解:(3)(4)是命题,(1)(2)不是命题.
理由如下:(1)是问句,故不是命题;(2)是做一件事情,也不是命题.
探究新知
观察下列命题,你能发现这些命题有什么共同的结构特
征?与同伴交流.
(1)如果两个三角形的三条边相等,那么这两个三角形的周长相等;
(2)如果两个数的绝对值相等,那么这两个数也相等;
(3)如果一个数的平方等于9,那么这个数是3.
都是“如果……那么……”的形式
二、命题的结构
探究新知
命题一般都可以写成“如果……那么……”的形式.
1.“如果”后接的部分是题设,
2.“那么”后接的部分是结论.
如命题:熊猫没有翅膀.改写为:
如果这个动物是熊猫,那么它就没有翅膀.
注意:添加“如果”“那么”后,命题的意义不能改变,改写的句子要完整,语句要通顺,使命题的题设和结论更明朗,易于分辨,改写过程中,要适当增加词语,切不可生搬硬套.
探究新知
命题
题设
结论
已知事项
由已知事项推出的事项
两直线平行 同位角相等
题设(条件)
结论
命题的组成:
总结归纳
特别规定:
正确的命题叫真命题,错误的命题叫假命题.
命题1:“如果一个数能被4整除,那么它也能被2整除”
观察下列命题,你能发现这些命题有什么不同的特点吗?
命题1是一个正确的命题;命题2是一个错误的命题.
命题2:“如果两个角相等,那么它们是对顶角”
真命题与假命题
合作探究
1.数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.
两点确定一条直线.
两点间线段最短.
经过直线外的一点有且仅有一条直线与已知直线平行.
两直线平行,同位角相等.
同位角相等,两直线平行.
直线公理:
线段公理:
平行线公理:
平行线性质公理:
平行线判定公理:
公理的概念
合作探究
2.有些命题是基本事实,还有些命题它们的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.
同角或等角的补角相等.
2.余角的性质:
同角或等角的余角相等.
4.垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
1.补角的性质:
3.对顶角的性质:
对顶角相等.
②垂线段最短.
学过的定理:
定理的概念
合作探究
在很多情况下,一个命题的正确性需要经过推理才能作出判断,这个推理过程叫作证明.
注意:
证明的每一步推理都要有根据,不能“想当然”.
证明的概念
合作探究
(1)同旁内角互补( )
(3)两点可以确定一条直线( )
(6)互为邻补角的两个角的平分线互相垂直( )
(2)一个角的余角大于这个角( )
1、判断下列命题的真假.真命题的用“√”,假命题的用“× 表示.
(4)两点之间线段最短( )
×

(5)等角的补角相等( )



×
巩固提高
2.下列语句中,不是命题的是(  )
A.两点之间线段最短
B.对顶角相等
C.不是对顶角不相等
D.过直线AB外一点P作直线AB的垂线
D
3.下列命题中,是真命题的是(  )
A.若a·b>0,则a>0,b>0
B.若a·b<0,则a<0,b<0
C. 若a·b=0,则a=0且b=0
D.若a·b=0,则a=0或b=0
D
巩固提高
4.举反例说明下列命题是假命题.
(1)若两个角不是对顶角,则这两个角不相等;
(2)若ab=0,则a+b=0.
解:(1)两条直线平行形成的内错角,这两个角不
是对顶角,但是它们相等;
(2)当a=5,b=0时,ab=0,但a+b≠0.
巩固提高
证明:∵AB∥CD(已知),
∴∠BPQ=∠CQP(两直线平行,内错角相等).
又∵PG平分∠BPQ,QH平分∠CQP(已知),
∴∠GPQ= ∠BPQ,∠HQP= ∠CQP(角平
分线的定义),
∴∠GPQ=∠HQP(等量代换),
∴PG∥HQ(内错角相等,两直线平行).
5.如图,已知AB∥CD,直线AB,CD被直线MN
所截,交点分别为P,Q,PG平分∠BPQ,
QH平分∠CQP,
求证:PG∥HQ.
A
B
C
D
M
N
P
Q
H
G
巩固提高
1.命题的定义:
2.命题的组成:
3.命题的分类:
真命题
假命题
公理
定理
(只需举一个反例)
(不需证明)
(由推理证实)
判断一件事情的句子
题设和结论
课堂小结
1.下列命题是假命题的是( )
A.同位角相等
B.对顶角相等
C.钝角三角形有两个锐角
D.两直线平行,内错角相等
A
当堂检测
2.下列命题是假命题的有( )
①若=4,则a=2;
②若a>b,则>;
③若a>b, b>c,则a>c;
④若|a|=|b|,则=.
A.1个 B.2个
C.3个 D.4个
B
3.下列句子哪些是命题?是命题的,指出是真命题还
是假命题?
(1)一条狗有四只脚;
(2)内错角相等;
(3)画一条直线;
(4)四边形是正方形;
(5)你的黑板报做完了吗?
(6)内错角相等,两直线平行;
(7)平行于同一直线的两直线平行;
(8)过点P画线段MN的垂线;
(9)x<3.

真命题


假命题

假命题


真命题

真命题


当堂检测
4.在下面的括号内,填上推理的依据.
如图,AB ∥ CD,CB ∥ DE ,
求证:∠ B+ ∠D=180°.
证明:∵ AB ∥ CD,
∴ ∠B= ∠C( ).
∵ CB ∥ DE,
∴ ∠ C+ ∠ D=180°( ),
∴ ∠ B+ ∠ D=180°( ).
等量代换
两直线平行,内错角相等
两直线平行,同旁内角互补
当堂检测
https://www.21cnjy.com/help/help_extract.php