6.3能源开发与环境保护 课后练习(word版含答案)

文档属性

名称 6.3能源开发与环境保护 课后练习(word版含答案)
格式 doc
文件大小 446.0KB
资源类型 教案
版本资源 沪科版(2019)
科目 物理
更新时间 2022-02-23 08:35:41

图片预览

文档简介

6.3能源开发与环境保护
一、选择题(共13题)
1.在一次演示实验中,一压紧的弹簧沿一粗糙水平面射出一小球,测得弹簧压缩的距离d和小球在粗糙水平面上滚动的距离s如下表所示.由此表可以归纳出小球滚动的距离s跟弹簧压缩的距离d之间的关系,并猜测弹簧的弹性势能Ep跟弹簧压缩的距离d之间的关系分别是(选项中k1、k2是常量)( )
实验次数 1 2 3 4
d/cm 0.50 1.00 2.00 4.00
s/cm 4.98 20.02 80.10 319.5
A.s=k1d,Ep=k2d
B.s=k1d,Ep=k2d2
C.s=k1d2,Ep=k2d
D.s=k1d2,Ep=k2d2
2.质量相同的物体A、B静止在光滑的水平面上,用质量和水平速度相同的子弹a、b分别射击A、B,最终a子弹留在A物体内,b子弹穿过B,A、B速度大小分别为vA和vB,则
A.vA>vB B.vA<vB
C.vA=vB D.条件不足,无法判定
3.大约在东汉时期,我国就发明了用来灌溉农田的水车,它体现了中华民族辉煌的创造力。如图,水车外形酷似古式车轮,轮幅直径大的20m左右,小的也在10m左右,周边装有盛水的容器(一般用竹简做成),在流水的冲力作用下,水车匀速转动将装满水的竹筒送到最高处,并将水全部倒入水槽中。现有一架水车,周边装有60个均匀分布的竹筒,每个竹筒能装m=1kg水,河水的流速为v=0.5m/s,假设水车能获得60%的流水速度匀速转动,则可知水车的功率约为(  )
A.10W B.30W C.60W D.100W
4.竖直放置的轻弹簧下端固定在地上,上端与质量为的钢板连接,钢板静止在点。现将一个质量也为的物块放到钢板上,使其缓慢往下运动后到达最低点后放手,物块第一次上升到最高点时钢板恰好向下经过位置。已知间的距离为,重力加速度为,则弹簧最大的弹性势能和钢板第一次经过点时的速度大小分别为(  )
A.; B.;
C.; D.;
5.一个质量为m1的人造地球卫星在高空做匀速圆周运动,轨道半径为r,某时刻和一个质量为m2的太空碎片发生迎头正碰,碰后二者结合成一个整体,速度大小变为卫星原来速度的,并开始沿椭圆轨道运动,轨道的远地点为碰撞时的点,若碰后卫星的内部装置仍能有效运转,当卫星与碎片的整体再次通过远地点时通过极短时间的遥控喷气可使整体仍在卫星碰前的轨道上做圆周运动,绕行方向与碰前相同.已知地球的半径为R,地球表面的重力加速度大小为g,则下列说法正确的是(  )
A.卫星与碎片碰撞前的线速度大小为
B.卫星与碎片碰撞前运行的周期大小为
C.喷气装置对卫星和碎片整体所做的功为
D.喷气装置对卫星和碎片整体所做的功为
6.民航客机的机舱一般都设有紧急出口,发生意外情况的飞机在着陆后,打开紧急出口的舱门,会自动生成由同种材料构成的一个安全气囊,安全气囊由斜面和水平薄面组成,机舱中的人可沿斜面滑行到水平薄面上,示意图如图所示。若人从气囊上由静止开始滑下,人与斜面和人与水平薄面间的动摩擦因数均为0.5,斜面与水平面间的夹角为θ=37°,g=10m/s2,sin37°=0.6,cos37°=0.8,不计空气阻力。要避免人与地面接触而受到伤害,则设计安全气囊时水平面和斜面的长度之比至少为(  )
A.1:3 B.2:5 C.3:5 D.1:1
7.据报道:“新冠”疫情期间,湖南一民警自费买药,利用无人机空投药品,将药品送到了隔离人员手中。假设无人机在离地面高度为处悬停后将药品自由释放,药品匀加速竖直下落了后落地,若药品质量为,重力加速度,则药品从释放到刚接触地面的过程中(  )
A.做自由落体运动 B.机械能守恒 C.动能增加了 D.机械能减少了
8.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m的小球,若升降机在匀速运行过程中突然停止,并以此时为零时刻,在后面一段时间内传感器显示弹簧弹力F随时间t变化的图像 如图乙所示,g为重力加速度,则(  )
A.升降机停止前在向下运动
B.时间内小球处于失重状态,时间内小球处于超重状态
C.时间内小球向下运动,动能先增大后减小
D.时间内弹簧弹性势能减少量小于小球动能变化量
9.某成年男子正在进行减肥训练,反复地将总质量为50kg的杠铃从地板举过头顶,他每分钟能够完成三个这样的动作。已知燃烧1g脂肪能提供39kJ的能量,其中有10%用于举杠铃的能量,忽略将杠铃放下时消耗的脂肪,那么减掉0.5kg脂肪所需时间约为(  )
A.1.2h B.5.2h C.11h D.33h
10.2021年2月,我国“天问一号”火星探测器到达火星附近,进入环火轨道,进行火星科学探测。探测器着陆前运行的轨道分别如图中1、2、3所示,则探测器(  )
A.沿不同轨道运动,经过P点时的加速度相同
B.由轨道2变到轨道3,需要在P点加速
C.在轨道1上运行的周期比在轨道2上运行的周期小
D.沿轨道3运动时的机械能大于沿轨道2运动时的机械能
11.固定斜面的倾角θ=,物体A与斜面之间的动摩擦因数,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A和B,滑轮右侧绳子与斜面平行,A的质量为4kg,B的质量为2kg,初始时物体A到C点的距离为L=1m,现给A、B一初速度v0=3m/s,使A开始沿斜面向下运动,B向上运动,物体A将弹簧压缩到最短后又恰好能弹到C点。已知重力加速度取g=10m/s2,不计空气阻力,整个过程中轻绳始终处于伸直状态,求此过程中(  )
A.物体A向下运动到达C点前加速度大小为2.5m/s2
B.物体A向下运动刚到达C点时的速度大小为4m/s
C.弹簧的最大压缩量为0.4m
D.弹簧的最大弹性势能为6J
12.某品牌纯电动汽车参数为:车上电池充满电时电池容量为100 kW·h,当整车质量(含车内人员和物品)为2 000 kg时,从静止加速到30 m/s最短时间为5 s,从30 m/s到刹停的最短距离为30 m,最大速度可达60 m/s.在平直道路上行驶时可认为阻力恒为车重的0.05倍,电能转化为有用功的效率为80%,取g=10 m/s2,.若该车在平直道路上行驶,下列结论正确的是
A.若汽车从静止加速到30 m/s用时为5 s,则这一过程的平均加速度大小为6 m/s2
B.汽车刹车由30 m/s减速到0所用的最短时间为1 s
C.当汽车以30 m/s匀速行驶时,汽车克服阻力做功的功率为30 kW
D.当汽车以30 m/s匀速行驶时,汽车的续航里程(最大行驶距离)为360 km
13.如图所示,有一个沿水平方向做匀速直线运动的半径为R的半圆柱体,半圆柱面上搁着一个只能沿竖直方向运动的竖直杆,在竖直杆未达到半圆柱体的最高点之前:(  )
A.半圆柱体向右匀速运动时,竖直杆向上做匀减速直线运动
B.半圆柱体向右匀速运动时,竖直杆向上做减速直线运动
C.半圆柱体以速度ν向右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为时,竖直杆向上的运动速度为
D.半圆柱体以速度ν向右匀速运动,杆同半圆柱体接触点和柱心的连线与竖直方向的夹角为时,竖直杆向上的运动速度为
二、填空题
14.一电动机将质量为60kg的物体从地面提升到10m的高出,则电动机的有用功是________J,若电动机消耗的电能为8000J,则此电动机的效率是_________.若是以1m/s的速度匀速提升,则有用功率是_________.(g=10m/s2)
15.绳长L=0.1m.小球和水平面接触但无相互作用,球两侧等距处放有固定挡板M、N,MN=L0=2m.现有一质量也为m=0.01kg的小物体B靠在M挡板处,它与水平面间的摩擦因数μ=0.25.物体与小球连线垂直于挡板M、N和绳.现物体B以初速v=10m/s从挡板M处向小球A运动.物体与小球碰撞时速度变为零,小球获得物体碰前的速度,物体与挡板碰撞将以相同速率反弹回来.物体和小球均可看成质点,那么物体和小球第一次碰撞后瞬间,细绳对小球的拉力为________N;物体从开始运动至最后停止的过程中,小球共转了_______个整圈.(g=10m/s2)
16.如图为水力发电的示意图,一台发电机能提供6.4×106W的电功率.假定水轮机和发电机的效率都是80%,则从上游冲下来的水每秒钟提供给水轮机______J的能量.若上、下游水面落差为24.8m,且上游水的流速为2m/s,则每秒钟需要______kg质量的水通过水轮机,才能产生这样的电功率.(g=10m/s2)
17.如图,放在光滑水平面上的两个木块A.B中间用轻弹簧相连,其质量分别为m1=2kg.m2=970g,木块A左侧靠一固定竖直挡板,且弹簧处于自然伸长状态,某一瞬间有一质量为m0=30g的子弹以v0=100m/s的速度水平向左射入木板B,并留在木块B内,木块B向左压缩弹簧然后被弹簧弹回,弹回时带动木块A运动,已知弹簧的形变在弹性限度范围内,求:
(1)从子弹射入木块B后到木块A恰好离开挡板的过程,木块B与子弹一起受到的弹簧弹力的冲量为多少
(2)当弹簧拉伸到最长时,弹簧的最大弹性势能EP
三、综合题
18.某种弹射装置如图所示,光滑的水平导轨AB右端B处与倾斜传送带平滑连接,传送带长度L=8.0m,皮带以恒定速率v=5.0m/s顺时针转动。质量m=1.0kg(可视为质点)的滑块置于弹射装置的右端并锁定(弹簧处于压缩状态),且弹簧具有弹性势能Ep=4.5J。某时刻解除锁定,滑块从静止开始运动并脱离弹簧后滑上倾角θ=30°的传送带,并从顶端沿传送带方向滑出斜抛落至地面上。已知滑块与传送带之间的动摩擦因数,重力加速度g=10m/s2,求:
(1)滑块刚冲上传送带底端的速度v1;
(2)滑块在传送带上因摩擦产生的热量Q;
(3)若每次实验开始时弹射装置具有的弹性势能不同,要使滑块滑离传送带后总能落至地面上的同一位置,则Ep的取值范围为多少
19.如图(甲)所示,一倾角为37°的传送带以恒定速率运行.现将一质量m=2 kg的小物体以某一初速度放上传送带,物体相对地面的速度随时间变化的关系如图(乙)所示,取沿传送带向上为正方向,g=10m/s2,sin 37°=0.6,cos37°=0.8。求:
(1)物体与传送带间的动摩擦因数;
(2)0~10 s内物体机械能增量及因与传送带摩擦产生的热量Q.
20.如图所示,一轻弹簧原长15cm,竖直放置在水平面上,将一质量为m1=8.1kg的物体无初速地放在弹簧上端,弹簧压得最短时长度为10cm.现将这弹簧放在与弹簧原长相等的光滑固定水平台B上,弹簧右端固定在平台边缘,平台左端有一等高质量为m=0.2 kg的长木板,木板静止在水平地面上并与B挨着,已知木板A与地面间的动摩擦因数μ1=0.1.将质量M=0.1 kg的小铁块(可视为质点)放平台B上与弹簧左端接触但不连接,用力推铁块向右压缩弹簧到长度为10cm,然后撤去推力无初速释放铁块,从木板A的右端滑上木板.铁块与木板间的动摩擦因数μ2=0.4,取重力加速度g=10 m/s2,木板足够长,求:
(1)弹簧上放物体压缩到最短10cm时,具有的弹性势能Ep;
(2)铁块相对木板滑动时木板的加速度的大小;
(3)铁块与木板摩擦所产生的热量Q和木板在水平地面上滑行的总路程x.
21.如图所示,质量m=1kg的物块A放在质量M=4kg木板B的左端,起初A、B静止在水平地面上。现用一水平向左的力F作用在木板B上,已知A、B之间的动摩擦因数为μ1=0.4,地面与B之间的动摩擦因数为μ2=0.1,假设最大静摩擦力等于滑动摩擦力,g=10m/s2。求:
(1)能使A、B发生相对滑动的F的最小值;
(2)若F=30N,作用1s后撤去,要想A不从B上滑落,则木板至少多长;从开始到A、B均静止,系统摩擦生热为多少?
试卷第1页,共3页
参考答案:
1.D
【详解】
由表中数据可看出,在误差范围内,s正比于d2,即s=k1d2,弹簧释放后,小球在弹簧的弹力作用下加速,小球在粗糙水平面滚动的距离s,从能量转化的角度得弹簧的弹性势能转化为由于小球在粗糙水平面滚动产生的内能,列出等式Ep=fs,f为摩擦力,恒量.所以Ep正比于d2,即Ep=k2d2,故选D.
2.A
【详解】
子弹留在木块中,即共速,此种情况是子弹损失动能最多的情况,即对木块做功最多,获得的动能最大,可判断vA>vB,
故选A
3.C
【详解】
水车能获得60%的流水速度匀速转动,即水车转动的线速度为
设轮幅半径为R,水车转动一圈对水做功增加水的重力势能,有
转一圈的时间为
则水车的功率约为
故选C。
4.B
【详解】
由功能关系可知弹簧最大的弹性势能为
钢板向上运动第一次经过点,由能量守恒可知
其速度大小为
选项B正确ACD错误。
故选B。
5.B
【详解】
A.卫星受到万有引力充当向心力,故有碰撞前
结合黄金替代公式
可得卫星与碎片碰撞前的线速度大小为
A错误;
B.根据公式
解得
B正确;
CD.当再次回到碰撞点,要使两者回到原来轨道运动,速度必须满足
故根据能量守恒定律可得
解得
故CD错误。
故选B。
6.B
【详解】
设斜面长度为l,则人下滑高度为
在斜面上运动克服摩擦力做功为
设水平面长度为s,在水平面上运动克服摩擦力做功为
要避免人与地面接触而受到伤害,人滑到气囊末端时速度0,由能量守恒可得
代入数据得
故B正确。
故选B。
7.D
【详解】
A.药品匀加速竖直下落,由
可得,下落的加速度
药品不是自由落体运动,故A错误;
B.由
可知,下落过程有空气阻力,阻力做功,机械能不守恒,故B错误;
C.落地速度为
动能增加
故C错误;
D.机械能减少
故D正确。
故选D。
8.C
【详解】
A.从0时刻开始,弹簧弹力减小,知小球向上运动,可知升降机停止前向上运动,故A错误;
B.0-tl时间内,重力大于弹力,加速度向下,处于失重状态,t1-t2时间内,重力大于弹力,加速度向下,也处于失重状态,故B错误;
C.0-tl时间内,小球向上运动,t1-t3时间内,小球向下运动,加速度先向下后向上,则速度先增大后减小,所以动能先增大后减小,故C正确;
D.t3时刻处于最低点,t3-t4时间内,小球向上运动,动能增加,弹性势能减小,重力势能增加,则小球弹性势能的减小量等于动能和势能增加量之和,所以t3-t4时间内弹簧弹性势能变化量大于小球动能变化量,故D错误。
故选C。
9.C
【详解】
减掉0.5kg脂肪提供的能量为
每分钟举杠铃的能量
由题意可知
故选C。
10.A
【详解】
A.根据牛顿第二定律,有
由于经过P点的距离r相同,所以沿不同轨道运动,经过P点时的加速度相同,选项A正确;
B.由轨道2变到轨道3,半径减小,做向心运动,因此需要在P点减速,选项B错误;
C.根据万有引力提供向心力,有
可得
在轨道1上运行的半径比在轨道2上运行的半径大,所以在轨道1上运行的周期比在轨道2上运行的周期大,选项C错误;
D.由轨道3变到轨道2,需要点火加速,因此沿轨道3运动时的机械能小于沿轨道2运动时的机械能,选项D错误。
故选A。
11.ACD
【详解】
A.物体A沿斜面向下运动时,B向上做运动,两者加速度大小相等,以AB整体为研究对象,根据牛顿第二定律得
代入数据解得
即加速度大小为2.5m/s2,故A正确;
B.由公式得
故B错误;
CD.设弹簧的最大压缩量为x,物体A将弹簧压缩到最短后又恰好能弹到C点,整个过程中,弹簧的弹力和重力对A做功均为零。设A的质量为mA,B的质量为mB,根据动能定理得
代入数据解得
弹簧从压缩最短到恰好能弹到C点的过程中,对系统根据能量关系有
因为
所以
故CD正确。
故选ACD。
12.AC
【详解】
A、汽车在0~30m/s的加速过程中的平均加速度大小为:,故A正确;
B、汽车刹车由30m/s减速到0所用时间最短为t,则有:,解得:,故B错误;
C、当汽车以30m/s匀速行驶时,汽车克服阻力做功的功率为:,故C正确;
D、当汽车以30m/s匀速行驶时,根据能量关系可得:电池容量为E=100kw·h,则持续时间,汽车的续航里程,故D错误.
13.BD
【详解】
杆和半圆柱间的作用力如图所示
则半圆柱对杆做功的功率为
杆对半圆柱压力做功的功率为
根据能量守恒有
解得
当半圆柱体向右匀速运动时,逐渐减小,所以杆的速度也逐渐减小,所以杆做减速运动。
故选BD。
14. 6000J; 75%; 600W
【详解】
电动机的有用功:W=mgh=60×10×10J=6000J;若电动机消耗的电能为8000J,则此电动机的效率是;以1m/s的速度匀速提升,则有用功率:P=Fv=mgv=600×1W=600W.
15. 9.6 10
【详解】
滑块从开始运动到第一次与小球碰前,根据动能定理得
v1为滑块速度,解得
小球与滑块碰撞后滑块停下,小球获得速度,对小球,根据牛顿第二定律得
解得:F=9.6N
设小球开始做第n次完整圆周运动时的速度为vn;通过最高点速度为,由于滑块的每次碰撞都不损失机械能,故对滑块有
对小球,根据机械能守恒得
根据牛顿第二定律得小球做完整圆周运动条件是,联立代入数据解得:n=10
16. ;
【详解】
从上游冲下来的水每秒钟提供给水轮机的能量:
根据,即,
解得m=4.0×104 kg.
17.(1)-6Ns;(2)3J
【详解】
(1)取水平向左为正方向,子弹射入木块B的瞬间,子弹和木块B组成的系统动量守恒,则有:
m0v0=(m0+m2)v1
代入数据解得:v1=3m/s
经分析可知,当木块A恰好离开挡板时,木块A的速度为0,且弹簧也恰好处于原长,根据能量守恒定律可知,此时B的速度大小为:v2=3m/s,方向水平向右,
则从子弹射入B后到木块A恰好离开挡板的过程中,木块B和子弹一起受到的弹簧弹力冲量为:
I=△P=-(m2+m0)v2-(m2+m0)v1,
代入数据解得:I=-6Ns
(2)当A和B与子弹速度相等时,弹簧最长,弹性势能最大,取水平向左为正方向,根据动量守恒定律得:
(m0+m2)v1=(m0+m2+m1)v
代入数据解得:v=1m/s
根据能量守恒得:最大弹性势能为
EP=(m0+m2)v12 (m0+m2+m1)v2=3J
18.(1)3m/s;(2)6J;(3)见解析
【详解】
(1) 弹簧具有弹性势能Ep=4.5J。某时刻解除锁定,滑块从静止开始运动,根据能量守恒,滑块刚冲上传送带底端的速度
解得:
(2)因为 ,故物块在传送带上向上加速,后匀速,加速度
解得:
加速到与传送带共速时间
可判断,位移小于传送带长,物块与传送带间相对位移
在传送带上因摩擦产生的热量
(3)根据以上分析可知,物块滑出传送带与传送带共速,物块刚好加速到与传送带共速,弹性势能最小

最小弹性势能
当物块减速到传送带顶端与传送带共速

解得:
最大弹性势能
故弹性势能 。
19.(1)0.875;(2)276J;252J
【详解】
(1)由速度图象可知,物体在传送带上加速运动的加速度
由牛顿第二定律
μmgcosθ-mgsinθ=ma
μ=
(2)由速度图象可知,物体在0~10s内的位移
物体上升的高度
h=Ssinθ
增加的重力势能
Ep=mgh=264J
增加的动能
机械能变化量
E= Ep+ Ek =276J
物体在0~6s内的位移
S1=
传送带的位移
S2=vt=4×6m=24m
摩擦产生的热量
Q=μmgcosθ(S2-S1)=252J
20.(1)Ep= 4.05J (2)a=0.5m/s2 (3)Q=3.6J,x=1.5m
【详解】
(1)物块向下压弹簧的过程,由能量守恒定律:Ep=m1g(L1-L2)=4.05J
(2)设铁块滑上木板时速度为v0,在木板上滑动时,铁块的加速度为a1,木板的加速度为a2,
由功能关系得
解得:v0=9m/s
由牛顿第二定律可得μ2Mg=Ma1,
解得:a1=μ2g=4 m/s2.
μ2Mg-μ1(M+m)g=ma2,
解得a2=0.5 m/s2.
设铁块与木板相对静止达共同速度时的速度为v,所需的时间为t,则有v=v0-a1t,v=a2t
解得:v=1 m/s,t=2 s.
铁块相对地面的位移
木板运动的位移
铁块与木板的相对位移Δx=x1-x2=10m-1m=9m
则此过程中铁块与木板摩擦所产生的热量Q=Ff·Δx=μ2Mg·Δx=0.4×0.1×10×9J=3.6J
达共同速度后的加速度为a3,发生的位移为s,则有:a3=μ1g=1m/s2
木板在水平地面上滑行的总路程x=x2+s=1m+0.5m=1.5m
21.(1)25N;(2)0.75m,75J
【详解】
(1)对于物块A,当A、B间静摩擦力达到最大静摩擦力时两者相对静止的加速度达到最大,即将相对滑动,根据牛顿第二定律有
解得
am=4m/s2
对A、B整体,根据牛顿第二定律有
解得
Fmin=25N
(2)设F作用在B上时A、B的加速度分别为a1、a2,撤掉F时速度分别为v1、v2,撤去外力F后加速度分别为、,A、B共同运动时速度为v3,加速度为a3,对于物块A,根据牛顿第二定律有
μ1mg=ma1
解得
a1=4m/s2
根据速度公式有
v1=a1t1=4m/s
对于木板B,根据牛顿第二定律有
解得
a2=5.25m/s2
根据速度公式有
v2=a2t1=5.25m/s
撤去外力后有
4m/s2
=2.25m/s2
经过t2时间后A、B速度相等,有
解得
t2=0.2s
共同速度
4.8m/s
从开始到A、B相对静止时,A、B的相对位移即为木板最短的长度L,则有
解得
L=0.75
A、B速度相等后共同在水平面上匀减速运动,加速度
a3=μ2g=1m/s2
从v3至最终静止位移为
x==11.52m
所以A的总位移为
AB间摩擦力产生的热量为
B与地面间的摩擦力产生的热量为
所以系统摩擦生热为