2021-2022学年北师大版七年级数学下册1.7整式的除法同步题型分类训练(Word版含答案)

文档属性

名称 2021-2022学年北师大版七年级数学下册1.7整式的除法同步题型分类训练(Word版含答案)
格式 doc
文件大小 71.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2022-02-21 21:17:23

图片预览

文档简介

2021-2022学年北师大版七年级数学下册《1-7整式的除法》同步题型分类训练(附答案)
一.整式的除法
1.计算(a2+ab)÷a的结果是(  )
A.a+b B.a2+b C.a+ab D.a3+a2b
2.计算:(3x)2+(﹣2x)3÷x.
3.长方形的面积是9a2﹣3ab+6a3,一边长是3a,则它的另一边长是(  )
A.3a2﹣b+2a2 B.b+3a+2a2 C.2a2+3a﹣b D.3a2﹣b+2a
4.若3x3+kx2+4被3x﹣1除后余3,则k的值为   .
5.已知被除式是x3+2x2﹣1,商式是x,余式是﹣1,则除式是   .
6.计算:(6a3b﹣24a2b2+3a2b)÷(3a2b).
7.计算:
(1)(﹣a a2)(﹣b)2+(﹣2a3b2)2÷(﹣2a3b2)
(2)(﹣2x3y2﹣3x2y2+2xy)÷2xy
8.计算:
(1)(x﹣y)9÷(y﹣x)6÷(x﹣y)
(2)﹣2x6﹣(x)2 8x5+(2x4)3÷(﹣x)5
9.计算:
(1)(12a3﹣6a2+3a)÷3a;
(2)(x﹣y)(x2+xy+y2).
10.计算:[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷3x2y.
11.计算:
(1)(﹣3ab) (﹣2a) (﹣a2b3);
(2)(25m2+15m3n﹣20m4)÷(﹣5m2).
12.计算:
(1)(﹣xy2)2 x2y÷(x3y4)
(2)(15x3y5﹣10x4y4﹣20x3y2)÷(5x3y2)
13.已知多项式2x3﹣4x2﹣1除以一个多项式A,得商式为2x,余式为x﹣1,求这个多项式.
14.已知一个多项式除以多项式a2+4a﹣3,所得商式是2a+1,余式为2a+8,求这个多项式.
15.已知A=2x,B是多项式,在计算B+A时,某同学把B+A看成B÷A结果得x2+x,求B+A.
二.整式的混合运算
16.有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积(  )
A.4a2 B.4a2﹣ab C.4a2+ab D.4a2﹣ab﹣2b2
17.计算:
(1)(x+5)2﹣(x+3)(x﹣3);
(2)(x+y)(x﹣3y)+(2x2y+6xy2)÷2x.
18.计算:
(1)(5x4﹣6x3)÷(﹣x)+3x (x﹣x2);
(2)(x+2y)(x﹣3y)﹣x(x+4y)+9xy.
19.化简:
(1)2a(a﹣b)﹣(a﹣b)2;
(2)(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab.
20.计算:
(1)(5x)2 x7﹣(3x3)3+2(x3)2+x3;
(2)(x+2y)(x﹣2y)﹣2x(x+3y)+(x+y)2.
三.整式的混合运算—化简求值
21.计算
(1)(﹣5x)2﹣(3x+5)(5x﹣3);
(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);
(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.
22.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.
23.先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.
参考答案
一.整式的除法
1.解:(a2+ab)÷a=a+b,
故选:A.
2.解:(3x)2+(﹣2x)3÷x
=9x2+(﹣8x3)÷x
=9x2﹣8x2
=x2.
3.解:(9a2﹣3ab+6a3)÷3a=3a﹣b+2a2,
故选:C.
4.解:∵3x3+kx2+4被3x﹣1除后余3,
∴3x3+kx2+4﹣3=3x3+kx2+1可被3x﹣1整除,
∴3x﹣1为3x3+kx2+1的一个因式,
∴当3x﹣1=0,即x=时,3x3+kx2+1=0,
即3×+k×+1=0,
解得k=﹣10.
故答案为:﹣10
5.解:x3+2x2﹣1﹣(﹣1)=x3+2x2,
(x3+2x2)÷x=x2+2x,
故答案为:x2+2x.
6.解:原式=6a3b÷3a2b﹣24a2b2÷3a2b+3a2b÷3a2b
=2a﹣8b+1.
7.解:(1)原式=﹣a3×b2+4a6b4÷(﹣2a3b2)
=﹣a3b2﹣2a3b2
=﹣3a3b2;
(2)原式=﹣x2y﹣xy+1.
8.解:(1)原式=(x﹣y)9÷(x﹣y)6÷(x﹣y)=(x﹣y)2=x2﹣2xy+y2;
(2)原式=﹣2x6﹣ 8x5+(8x12)÷(﹣x5)=﹣2x6﹣2x7﹣8x7=﹣2x6﹣10x7.
9.解:(1)(12a3﹣6a2+3a)÷3a;
=12a3÷3a﹣6a2÷3a+3a÷3a
=4a2﹣2a+1;
(2)(x﹣y)(x2+xy+y2).
=x3+x2y+xy2﹣x2y﹣xy2﹣y3
=x3﹣y3.
10.解:原式=(x3y2﹣x2y﹣x2y+x3y2)÷3x2y
=.
11.解:(1)原式=6a2b (﹣a2b3)=﹣6a4b4;
(2)原式=25m2÷(﹣5m2)+15m3n÷(﹣5m2)﹣20m4÷(﹣5m2)
=﹣5﹣3mn+4m2.
12.解:(1)原式=x2y4 x2y÷(x3y4)
=x4y5÷(x3y4)
=xy;
(2)原式=15x3y5÷(5x3y2)﹣10x4y4÷(5x3y2)﹣20x3y2÷(5x3y2)
=3y3﹣2xy2﹣4.
13.解:A=[(2x3﹣4x2﹣1)﹣(x﹣1)]÷(2x),
=(2x3﹣4x2﹣x)÷(2x),
=x2﹣2x﹣.
14.解:(a2+4a﹣3)(2a+1)+(2a+8)
=2a3+8a2﹣6a+a2+4a﹣3+2a+8
=2a3+9a2+5.
15.解:∵B÷A=x2+x,A=2x,
∴B=(x2+x) 2x=2x3+x2.
∴B+A=2x3+x2+2x.
二.整式的混合运算
16.解:余下的部分的面积为(2a+b)(2a﹣b)﹣b(a﹣b)
=4a2﹣b2﹣ab+b2
=4a2﹣ab,
故选:B.
17.解:(1)(x+5)2﹣(x+3)(x﹣3)
=x2+10x+25﹣x2+9
=10x+34;
(2)(x+y)(x﹣3y)+(2x2y+6xy2)÷2x
=x2﹣3xy+xy﹣3y2+xy+3y2
=x2﹣xy.
18.解:(1)(5x4﹣6x3)÷(﹣x)+3x (x﹣x2)
=﹣5x3+6x2+3x2﹣3x3
=﹣8x3+9x2;
(2)(x+2y)(x﹣3y)﹣x(x+4y)+9xy
=x2﹣3xy+2xy﹣6y2﹣x2﹣4xy+9xy
=4xy﹣6y2.
19.解:(1)2a(a﹣b)﹣(a﹣b)2
=2a2﹣2ab﹣a2+2ab﹣b2
=a2﹣b2;
(2)(a+b)(a﹣b)+(4ab3﹣8a2b2)÷4ab
=a2﹣b2+b2﹣2ab
=a2﹣2ab.
20.解:(1)(5x)2 x7﹣(3x3)3+2(x3)2+x3
=25x2 x7﹣27x9+2x6+x3
=25x9﹣27x9+2x6+x3
=﹣2x9+2x6+x3;
(2)(x+2y)(x﹣2y)﹣2x(x+3y)+(x+y)2
=x2﹣4y2﹣2x2﹣6xy+x2+2xy+y2
=﹣3y2﹣4xy.
三.整式的混合运算—化简求值
21.解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)
=25x2﹣15x2+9x﹣25x+15
=10x2﹣16x+15;
(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)
=4x2﹣12xy+9y2﹣9y2+x2
=5x2﹣12xy;
(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)
=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)
=(x2y2﹣2x2y)÷(﹣2xy)
=﹣xy+x,
把,y=3代入得:
﹣xy+x
=﹣×(﹣)×3+(﹣)
=﹣
=.
22.解:原式=4﹣a2+a2﹣5ab+3ab=4﹣2ab,
当ab=﹣时,原式=4+1=5.
23.解:∵|x﹣2|+(y+1)2=0,
∴x﹣2=0,y+1=0,
解得,x=2,y=﹣1,
∴[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x
=(9x2﹣4y2+4y2﹣6xy+2xy﹣3x2)÷4x
=(6x2﹣4xy)÷4x
=1.5x﹣y
=1.5×2﹣(﹣1)
=3+1
=4.