2022年必考点解析冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专项训练试题(word解析版)

文档属性

名称 2022年必考点解析冀教版七年级数学下册第十章一元一次不等式和一元一次不等式组专项训练试题(word解析版)
格式 zip
文件大小 153.5KB
资源类型 教案
版本资源 冀教版
科目 数学
更新时间 2022-02-22 13:50:21

图片预览

文档简介

第十章一元一次不等式和一元一次不等式组专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则下列式子中,错误的是(   )
A. B. C. D.
2、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为(  )
A.5 B.8 C.11 D.9
3、不等式的解集为( )
A. B. C. D.
4、不等式的最小整数解是( )
A. B.3 C.4 D.5
5、不等式组的最小整数解是( )
A.5 B.0 C. D.
6、若xA.﹣x+2<﹣y+2 B.4x>4y C.﹣3x<﹣3y D.x﹣27、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为(  )
A.24人 B.23人 C.22人 D.不能确定
8、下列说法中不正确的个数有( )
①有理数的倒数是
②绝对值相等的两个数互为相反数
③绝对值既是它本身也是它的相反数的数只有0
④几个有理数相乘,若有奇数个负因数,则乘积为负数
⑤若,则
A.1个 B.2个 C.3个 D.4个
9、若方程组的解满足,则k的值可能为( )
A.-1 B.0 C.1 D.2
10、若m<n,则下列各式正确的是(  )
A.﹣2m<﹣2n B. C.1﹣m>1﹣n D.m2<n2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、不等式的解集为______.
2、像这样,关于同一未知数的两个一元一次不等式合在一起,就组成一个__________.
3、不等式4x﹣3≤2x+1的非负整数解的和是 _____.
4、①-2<0;②2x>3;③2≠3;④2x2-1;⑤x≠-5中是不等式的有____(填序号).
5、不等式组的解集是_______.
三、解答题(5小题,每小题10分,共计50分)
1、今年“六一”前夕,某文具店花费2200元采购了A、B两种型号的文具进行销售,其进价和售价之间的关系如表:
型号 进价(元/个) 售价(元/个)
A型 10 12
B型 15 20
若两种型号的文具按表中售价全部售完,则该商店可以盈利600元.
(1)问该商店当初购进A、B两种型号文具各多少个?
(2)“六一”当天,A、B两种型号文具各剩下20%还未卖出,文具店老板在第二天降价出售,且两种型号文具每件降了同样的价格,要使得这批文具售完后的总盈利不低于546元,那么这两种型号的文具每件最多降多少元?
2、美术小组准备到文具店购买铅笔和橡皮.已知1支铅笔的批发价比零售价低0.2元,1块橡皮的批发价比零售价低0.3元.如果购买60支铅笔和30块橡皮,那么都需按零售价购买,共支付105元;如果购买90支铅笔和60块橡皮,那么都需按批发价购买,共支付144元;那么有以下两种购买方案可供选择:
方案一 铅笔和橡皮都按批发价购买;
方案二 铅笔和橡皮都按零售价购买,总费用打m折.
若根据方案一购买,共需支付144元.
(1)铅笔和橡皮的批发价各是多少?
(2)若根据方案二购买所需的费用不少于方案一所需的费用,求m的最小值.
3、某工厂需将产品分别运送至不同的仓库,为节约运费,考察了甲、乙两家运输公司.甲、乙公司的收费标准如下表:
运输公司 起步价(单位:元) 里程价(单位:元/千米)
甲 1000 5
乙 500 10
(1)仓库A距离该工厂120千米,应选择哪家运输公司?
(2)仓库B,C,D与该工厂的距离分别为60千米、100千米、200千米,运送到哪个仓库时,可以从甲、乙两家运输公司任选一家?
(3)根据以上信息,你能给工厂提供选择甲、乙公司的标准吗?
4、解不等式:
5、解不等式组:,并把其解集在数轴上表示出来.
-参考答案-
一、单选题
1、D
【解析】
【分析】
利用不等式的基本性质逐一判断即可.
【详解】
解:A. 若,则正确,故A不符合题意;
B. 若,则正确,故B不符合题意;
C. 若,则,正确,故C不符合题意;
D. 若d,则,所以D错误,故D符合题意,
故选:D.
【点睛】
本题考查不等式的性质,掌握相关知识是解题关键.
2、C
【解析】
【分析】
分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.
【详解】
解:解不等式x-a≥1,得:x≥a+1,
解不等式x+5≤b,得:x≤b-5,
∵不等式组的解集为3≤x≤4,
∴a+1=3,b-5=4,
∴a=2,b=9,
则a+b=2+9=11,
故选:C.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
3、D
【解析】
【分析】
首先根据一元一次不等式的一般步骤,对其移项,合并同类项,将系数化为1即可得出答案.
【详解】
移项得:,
合并同类项得:,
将系数化为1得:.
故选:D.
【点睛】
本题考查了解一元一次不等式的知识,熟练掌握解不等式的一般步骤是解题的关键.
4、C
【解析】
【分析】
先求出不等式解集,即可求解.
【详解】
解:
解得:
所以不等式的最小整数解是4.
故选:C.
【点睛】
本题考查了一元一次不等式的解法,正确解不等式,求出解集是解决本题的关键.
5、C
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.
【详解】
解:解不等式,得:,
解不等式,得:,
故不等式组的解集为:,
则该不等式组的最小整数解为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
6、D
【解析】
【分析】
不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.
【详解】
解:A、不等式x﹣y,
不等式﹣x>﹣y的两边都加上2,不等号的方向不变,即﹣x+2>﹣y+2,原变形错误,
故此选项不符合题意;
B、不等式xC、不等式x﹣3y,原变形错误,故此选项不符合题意;
D、不等式x故选:D.
【点睛】
本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.
7、C
【解析】
【分析】
根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.
【详解】
解:设每组预定的学生数为x人,由题意得,
解得
是正整数
故选:C.
【点睛】
本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.
8、B
【解析】
【分析】
由倒数的定义可判断①,由绝对值的含义可判断②③,由有理数的乘法中积的符号确定方法可判断④,由不等式的基本性质可判断⑤,从而可得答案.
【详解】
解:因为 所以有理数的倒数是,故①正确;不符合题意
绝对值相等的两个数互为相反数或者相等,故②不正确;符合题意;
绝对值既是它本身也是它的相反数的数只有0,故③正确;不符合题意;
几个不为零有理数相乘,若有奇数个负因数,则乘积为负数,若其中一个因数为0,则结果为0,故④不正确;符合题意;
若,则,故⑤正确;不符合题意;
所以②④符合题意
故选: B.
【点睛】
本题考查的是倒数的含义,绝对值的含义,有理数乘法中积的符号确定,不等式的性质,掌握以上基础知识是解本题的关键.
9、D
【解析】
【分析】
将两个方程组相加得到:,再由即可求出进而求解.
【详解】
解:由题意可知:,
将①+②得到:,
∵,
∴,
解得,
故选:D.
【点睛】
本题考查二元一次方程组的解法及不等式的解法,解题关键是求出,进而求出k的取值范围.
10、C
【解析】
【分析】
根据不等式的基本性质逐项判断即可.
【详解】
解:A:∵m<n,
∴﹣2m>﹣2n,
∴不符合题意;
B:∵m<n,
∴,
∴不符合题意;
C:∵m<n,
∴﹣m>﹣n,
∴1﹣m>1﹣n,
∴符合题意;
D: m<n,当时,m2>n2,
∴不符合题意;
故选:C.
【点睛】
本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.
二、填空题
1、x>-8
【解析】
【分析】
按照去分母、去括号、移项、合并同类项的步骤求出不等式的解集.
【详解】
解:,
去分母,得
6+x>-2,
移项,得
x>-2-6,
合并同类项,得
x>-8.
故答案为:x>-8.
【点睛】
本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.
2、一元一次不等式组
【解析】

3、3
【解析】
【分析】
根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.
【详解】
解:4x﹣3≤2x+1
移项,得:4x﹣2x≤1+3,
合并同类项,得:2x≤4,
系数化为1,得:x≤2,
∴不等式的非负整数解为0、1、2,
∴不等式的非负整数解的和为0+1+2=3,
故答案为:3.
【点睛】
本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.
4、①②③⑤
【解析】
【分析】
根据不等式的定义用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式,依次判断5个式子即可.
【详解】
解:依据不等式的定义用不等号连接表示不相等关系的式子是不等式,分析可得这5个式子中,①②③⑤是不等式,④是代数式;
故答案为:①②③⑤.
【点睛】
本题属基本概念型的题目,考查不等式的定义,注意x≠-5这个式子,难度不大.
5、x<﹣3
【解析】
【分析】
根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)进行解答.
【详解】
解:根据“同小取小”,不等式组的解集是x<﹣3.
故答案为:x<﹣3.
【点睛】
本题考查了一元一次不等式组的解集.解题的关键是掌握一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
三、解答题
1、 (1)该商店当初购进A型号文具100个,B型号文具80个
(2)1.5元
【解析】
【分析】
(1)设该商店当初购进A型号文具x个,B型号文具y个,根据用2200元购进的A、B两种型号的文具全部售出后可盈利600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设这两种型号的文具每件降m元,利用这批文具售完后的总盈利=600﹣剩余文具的数量×每件降低的价格,结合使得这批文具售完后的总盈利不低于546元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
(1)
解:(1)设该商店当初购进A型号文具x个,B型号文具y个,
依题意得:,
解得:.
答:该商店当初购进A型号文具100个,B型号文具80个;
(2)
(2)设这两种型号的文具每件降m元,
依题意得:600﹣(100+80)×20%m≥546,
解得:m≤1.5.
答:这两种型号的文具每件最多降1.5元.
【点睛】
此题考查了二元一次方程组的实际应用,一元一次不等式的实际应用,正确理解题意利用方程组或是不等式解决实际问题是解题的关键.
2、 (1)铅笔的批发价为每支0.8元,橡皮的批发价为每块1.2元;
(2)所以m的最小值是8.
【解析】
【分析】
(1)设铅笔的批发价为每支x元,橡皮的批发价为每块y元,根据题意列二元一次方程组求解即可;
(2)根据题意列不等式求解即可.
(1)
解:设铅笔的批发价为每支x元,橡皮的批发价为每块y元.
根据题意,得方程组,
解方程组,得,
答:铅笔的批发价为每支0.8元,橡皮的批发价为每块1.2元;
(2)
解:根据题意,得不等式(90×1+60×1.5)· ≥144.
解不等式,得m≥8.
所以m的最小值是8.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准关系,正确列出一元一次不等式.
3、 (1)该工厂选择甲运输公司更划算
(2)运送到C仓库时,甲、乙两家运输公司收费相同,可以任选一家
(3)当仓库与工厂的距离大于100千米时,选择甲公司;当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;当仓库与工厂的距离小于100千米时,选择乙公司
【解析】
【分析】
(1)根据收费方式分别计算出甲乙公司的费用比较即可;
(2)设当运输距离为x千米时,甲、乙两家运输公司收费相同,由两家公司的收费方式列方程,然后解出即可;
(3)根据收费方式计算出甲公司的费用大于乙公司时的运输距离,和甲公司的费用小于于乙公司时的运输距离即可得出结论.
(1)
甲运输公司收费为(元),
乙运输公司收费为(元).
因为,所以该工厂选择甲运输公司更划算.
(2)
设当运输距离为x千米时,甲、乙两家运输公司收费相同.
根据题意,得,
解得.
答:运送到C仓库时,甲、乙两家运输公司收费相同,可以任选一家.
(3)
当甲公司收费大于乙公司时:, ,
当甲公司收费小于乙公司时:,,
综上:当仓库与工厂的距离大于100千米时,选择甲公司;
当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;
当仓库与工厂的距离小于100千米时,选择乙公司.
【点睛】
本题考查了一元一次方程的实际应用及一元一次不等式的应用,依据题意,正确建立方程是解题关键.
4、x<-1
【解析】
【分析】
先根据多项式与多项式的乘法法则化简,再根据解不等式的步骤求解.
【详解】
解:∵
∴x2-7x+3x-21+8>x2-x+5x-5,
∴x2-7x+3x-x2+x-5x>-5-8+21,
∴-8x>8,
∴x<-1.
【点睛】
本题考查了多项式与多项式的乘法法则,以及一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.
5、﹣1.5<x≤1,图见解析.
【解析】
【分析】
分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集最后在数轴上表示出不等式组的解集即可.
【详解】
解:
解不等式3x﹣4<5x﹣1,得:x>﹣1.5,
解不等式,得:x≤1,
则不等式组的解集为﹣1.5<x≤1,
将其解集表示在数轴上如下:
【点睛】
本题主要考查了解一元一次不等式组,在数轴上表示出不等式组的解集,解题的关键在于能够熟练掌握求不等式组解集的方法.