第18章平行四边形练习题2020-2021年河南省各地八年级下学期期末数学(人教版)试题选编(Word版含解析)

文档属性

名称 第18章平行四边形练习题2020-2021年河南省各地八年级下学期期末数学(人教版)试题选编(Word版含解析)
格式 docx
文件大小 1.7MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-02-25 12:22:25

图片预览

文档简介

第18章:平行四边形练习题
一、单选题
1.(2021·河南郾城·八年级期末)如图,已知平行四边形中,,则( )
A.18° B.36° C.72° D.144°
2.(2021·河南·巩义市教育科研培训中心八年级期末)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为( )
A.40° B.50° C.60° D.70°
3.(2021·河南·太康县教育体育局基础教育教学研究室八年级期末)在平行四边形ABCD中,∠A:∠B:∠C:∠D可以为(  )
A.1:2:3:4 B.3:2:3:2 C.2:2:1:1 D.1:3:3:1
4.(2021·河南宝丰·八年级期末)如图,平行四边形ABCD的周长为36cm,ABC的周长为28cm,则对角线AC的长为(  )
A.28cm B.18cm C.10cm D.8cm
5.(2021·河南·武陟中学八年级期末)如图,在平行四边形ABCD中,AB=5,BC=8,以点D为圆心,任意长为半径画弧,交AD于点P,交CD于点Q,分别以P、Q为圆心,大于PQ为半径画弧交于点M,连接DM并延长,交BC于点E,连接AE,恰好有AE⊥BC,则AE的长为( )
A.3 B.4 C.5 D.
6.(2021·河南淮阳·八年级期末)如图, ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是( )
A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB
7.(2021·河南睢阳·八年级期末)如图,平行四边形的顶点O,A,C的坐标分别是,则顶点B的坐标是( )
A. B. C. D.
8.(2021·河南镇平·八年级期末)如图,在 ABCD中,连接AC,∠ABC=∠CAD=45°,AB=2,则BC的长是(  )
A. B.2 C.2 D.4
9.(2021·河南省淮滨县第一中学八年级期末)平行四边形的两条对角线长分别为6和10,则平行四边形的一条边的长x的取值范围为( )
A.4<x<6 B.2<x<8 C.0<x<10 D.0<x<6
10.(2021·河南固始·八年级期末)如图,在 ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则 ABCD的周长为(  )
A.6 B.12 C.18 D.24
11.(2021·河南·武陟中学八年级期末)已知的周长为16,点,,分别为三条边的中点,则的周长为( )
A.8 B. C.16 D.4
12.(2021·河南沈丘·八年级期末)下列说法不正确的是( )
A.有两组对边分别平行的四边形是平行四边形
B.平行四边形的对角线互相平分
C.平行四边形的对边平行且相等
D.平行四边形的对角互补,邻角相等
13.(2021·河南·巩义市教育科研培训中心八年级期末)如图,在中,、的平分线BE、CF分别与AD相交于点E、F,BE与CF相交于点G,若,,BC=10,,则BE的长为( )
A. B.8 C. D.10
14.(2021·河南许昌·八年级期末)如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为( )
A.12 B.14 C.24 D.21
15.(2021·河南省淮滨县第一中学八年级期末)如图,在四边形ABCD中,∠A=90°,AB=3,,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为(  )
A.2 B.3 C.4 D.
16.(2021·河南柘城·八年级期末)如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是
A.4 B.3 C.2 D.1
17.(2021·河南叶县·八年级期末)点D,E分别是三角形ABC的边AB,AC的中点,如图,
求证:且
证明:延长DE到F,使EF=DE,连接FC,DC,AF,
又AE=EC,则四边形ADCF是平行四边形,
接着以下是排序错误的证明过程;
①;
②;
③四边形DBCF是平行四边形;
④且
则正确的证明排序应是:( )
A.②③①④ B.②①③④ C.①③④② D.①③②④
18.(2021·河南梁园·八年级期末)如图,在中,,点,分别是边,的中点,那么的长为  
A.2 B.1.5 C.4 D.3
19.(2021·河南林州·八年级期末)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为(  )
A. B. C. D.
20.(2021·河南省淮滨县第一中学八年级期末)如图,在矩形中,对角线与相交于点,若,那么的度数是( )
A. B. C. D.
21.(2021·河南安阳·八年级期末)如图,将一个边长为4和8的长方形纸片ABCD折叠,使C点与A点重合,则折痕EF的长是(   )
A. B. C. D.
22.(2021·河南新野·八年级期末)如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为(  )
A.1 B.2
C.3 D.4
23.(2021·河南省淮滨县第一中学八年级期末)如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为( )
A.(0,-) B.(0,-) C.(0,-) D.(0,-)
24.(2021·河南召陵·八年级期末)如图,矩形ABCD中,E是AD的中点,将沿直线BE折叠后得到 ,延长BG交CD于点F,若 则FD的长为( )
A.1 B.2 C. D.
25.(2021·河南沈丘·八年级期末)如图,小明将一张长为,宽为的长方形纸剪去了一角,量得,,则长为( )
A. B. C. D.
26.(2021·河南延津·八年级期末)如图,在中,,,,是的中点,则中最短边的长为( )
A. B. C. D.
27.(2021·河南镇平·八年级期末)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是(  )
A.20 B.24 C.40 D.48
28.(2021·河南伊川·八年级期末)如图,在平面直角坐标系中,四边形为菱形,,,,则对角线交点的坐标为( )
A. B. C. D.
29.(2021·河南罗山·八年级期末)如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为(  )
A. B. C.4 D.
30.(2021·河南商城·八年级期末)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为(  )
A.13 B.14 C.15 D.16
31.(2021·河南新蔡·八年级期末)将矩形纸片按如图的方式折叠,使点B与点D都与对角线AC的中点O重合,得到菱形,若,则的长为( )
A. B. C. D.
32.(2021·河南汝南·八年级期末)菱形的两条对角线长分别是6和8,则此菱形的周长是( )
A.5 B.20 C.24 D.32
33.(2021·河南新野·八年级期末)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使 ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①② B.②③ C.①③ D.②④
34.(2021·河南省淮滨县第一中学八年级期末)如图,正方形ABCD中,AB=12,点E在边CD上,且BG=CG,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正确结论的个数是( )
A.2个 B.3个 C.4个 D.5个
35.(2021·河南西平·八年级期末)下列命题:
①一组对边平行,另一组对边相等的四边形是平行四边形;
②对角线互相垂直且平分的四边形是菱形;
③一个角为90°且一组邻边相等的四边形是正方形;
④对角线相等的平行四边形是矩形.
其中真命题的个数是( )
A.1 B.2 C.3 D.4
36.(2021·河南息县·八年级期末)已知四边形是平行四边形,,相交于点O,下列结论错误的是( )
A.,
B.当时,四边形是菱形
C.当时,四边形是矩形
D.当且时,四边形是正方形
37.(2021·河南夏邑·八年级期末)下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )
A.由②推出③,由③推出① B.由①推出②,由②推出③
C.由③推出①,由①推出② D.由①推出③,由③推出②
38.(2021·河南确山·八年级期末)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是(  )
A.1 B. C. D.
39.(2021·河南省淮滨县第一中学八年级期末)如图,四边形是边长为6的正方形,点在边上,,过点作,分别交于两点.若分别是的中点,则的长为( )
A.3 B. C. D.4
40.(2021·河南新蔡·八年级期末)如图,边长分别为和的两个正方形和并排放在一起,连结并延长交于点,交于点,则
A. B.2 C.2 D.1
二、填空题
41.(2021·河南方城·八年级期末)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.
42.(2021·河南·武陟中学八年级期末)如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.
43.(2021·河南淮阳·八年级期末)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.
44.(2021·河南·武陟中学八年级期末)如图,在中,,分别是和的中点,连接,点是的中点,连接并延长,交的延长线于点,若,则的长为_________.
45.(2021·河南通许·八年级期末)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是_____.
46.(2021·河南许昌·八年级期末)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为_____.
47.(2021·河南罗山·八年级期末)如图,在边长为的正方形中,点分别是边的中点,连接点分别是的中点,连接,则的长度为__________.
48.(2021·河南林州·八年级期末)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形,对角线交于点.若,则__________.
49.(2021·河南光山·八年级期末)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于点H,则DH=_____.
50.(2021·河南省淮滨县第一中学八年级期末)如图,若 ABCD的周长为22 cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AB=________.
51.(2021·河南洛宁·八年级期末)如图,四边形是正方形,延长到,使,则__________°.
52.(2021·河南上蔡·八年级期末)如图,矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为____________.
53.(2021·河南焦作·八年级期末)如图,在平行四边形ABCD中,BE平分∠ABC,CF⊥BE,连接AE,G是AB的中点,连接GF,若AE=4,则GF=_____.
54.(2021·河南省淮滨县第一中学八年级期末)如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM 的最小值为________.
三、解答题
55.(2021·河南洛阳·八年级期末)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
56.(2021·河南伊川·八年级期末)如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.
(1)求证:△AFE≌△CDF;
(2)若AB=4,BC=8,求图中阴影部分的面积.
57.(2021·河南西平·八年级期末)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.
(1)求证:四边形OEFG是矩形;
(2)若AD=10,EF=4,求OE和BG的长.
58.(2021·河南镇平·八年级期末)在正方形ABCD中,对角线BD所在的直线上有两点E、F满足BE=DF,连接AE、AF、CE、CF,如图所示.
(1)求证:△ABE≌△ADF;
(2)试判断四边形AECF的形状,并说明理由.
59.(2021·河南召陵·八年级期末)如图,在平行四边形中,对角线与交于点O,点M,N分别为、的中点,延长至点E,使,连接.
(1)求证:;
(2)若,且,,求四边形的面积.
60.(2021·河南柘城·八年级期末)如图,在□ABCD 中,对角线 AC 与 BD 相交于点 O ,点 E , F 分别为 OB , OD 的中点,延长 AE 至 G ,使 EG =AE ,连接 CG .
(1)求证: △ABE≌△CDF ;
(2)当 AB 与 AC 满足什么数量关系时,四边形 EGCF 是矩形?请说明理由.
61.(2021·河南郾城·八年级期末)如图,在中,于点E点,延长BC至F点使,连接AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若,,,求AE的长.
62.(2021·河南夏邑·八年级期末)如图1,在长方形中,,点P从点B出发,以的速度沿向点C运动(点P运动到点C处时停止运动),设点P的运动时间为.
(1)_____________.(用含t的式子表示)
(2)当t为何值时,?
(3)如图2,当点P从点B开始运动,同时,点Q从点C出发,以的速度沿向点D运动(点Q运动到点D处时停止运动,两点中有一点停止运动后另一点也停止运动),是否存在这样的值使得与全等?若存在,请求出的值;若不存在,请说明理由.
63.(2021·河南通许·八年级期末)如图,在四边形中,,延长到E,使,连接交于点F,点F是的中点.求证:
(1).
(2)四边形是平行四边形.
64.(2021·河南许昌·八年级期末)如图,已知 ABCD的对角线AC、BD相交于点O,AD=12,BD=10,AC=26.
(1)求△ADO的周长;
(2)求证:△ADO是直角三角形.
65.(2021·河南林州·八年级期末)如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若DC=2,AC=4,求OE的长.
66.(2021·河南西平·八年级期末)如图,正方形,G是边上任意一点(不与B、C重合),于点E,,且交于点F.
(1)求证:;
(2)四边形是否可能是平行四边形,如果可能请指出此时点G的位置,如不可能请说明理由.
67.(2021·河南潢川·八年级期末)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;②当AM的值为 时,四边形AMDN是菱形.
68.(2021·河南商城·八年级期末)如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
(2)性质探究:如图1,四边形的对角线、交于点,.试证明:;
(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结、、.已知,,求的长.
69.(2021·河南罗山·八年级期末)如图,四边形ABCD是平行四边形,//,且分别交对角线AC于点E,F,连接BE,DF.
(1)求证:AE=CF;
(2)若BE=DE,求证:四边形EBFD为菱形.
70.(2021·河南·太康县教育体育局基础教育教学研究室八年级期末)如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.
(1)若∠BCF=60°,求∠ABC的度数;
(2)求证:BE=DF.
试卷第1页,共3页
参考答案:
1.B
【分析】
利用平行四边形的性质解决问题即可
【详解】
解:在平行四边形ABCD中,
∵BC∥AD,
∴∠A+∠B=180°,
∵∠B=4∠A,
∴∠A=36°,
∴∠C=∠A=36°,
故选:B.
【点睛】
本题考查平行四边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
2.D
【分析】
先根据等腰三角形的性质和三角形的内角和定理求出∠C的度数,再根据平行四边形的性质解答即可.
【详解】
解:∵∠A=40°,AB=AC,
∴∠ABC=∠C=70°,
∵四边形ABCD是平行四边形,
∴∠E=∠C=70°.
故选:D.
【点睛】
本题考查了等腰三角形的性质、平行四边形的性质和三角形的内角和定理等知识,属于基础题型,熟练掌握等腰三角形和平行四边形的性质是解题关键.
3.B
【分析】
根据平行四边形的对角相等,判定.
【详解】
解:∵平行四边形对角相等,
∴对角的比值数应该相等,
其中A,C,D都不满足,只有B满足.
故选:B.
【点睛】
本题考查了平行四边形的性质,熟练掌握平行四边形的对角相等是解题的关键.
4.C
【分析】
平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=36,则AB+BC=18cm,而△ABC的周长=AB+BC+AC=28,继而即可求出AC的长.
【详解】
解:∵ ABCD的周长是36cm,
∴AB+AD=18m,
∵△ABC的周长是28cm,
∴AB+BC+AC=28cm,
∴AC=(AB+BC+AC)﹣(AB+AC)=28﹣18=10(cm).
故选:C.
【点睛】
本题考查了平行四边形的性质,掌握平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.
5.B
【分析】
由题意可知,再利用平行四边形的性质即可证明,即,即可求出,最后在中,利用勾股定理即可求出AE的长.
【详解】
根据作图可知DE为的角平分线,即,
∵四边形ABCD为平行四边形,
∴,
∴,
∴,
∴,
∴,
∴在中,.
故选B.
【点睛】
本题考查角平分线的判定和性质,平行四边形的性质,等腰三角形的判定和性质以及勾股定理.理解题意,判断出DE为的角平分线是解答本题的关键.
6.C
【详解】
试题分析:对角线不一定相等,A错误;
对角线不一定互相垂直,B错误;
对角线互相平分,C正确;
对角线与边不一定垂直,D错误.
故选C.
考点:平行四边形的性质.
7.B
【分析】
根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.
【详解】
解:∵四边形OABC是平行四边形,
∴OC∥AB,OA∥BC,
∴点B的纵坐标为2,
∵点O向右平移1个单位,向上平移2个单位得到点C,
∴点A向右平移1个单位,向上平移2个单位得到点B,
∴点B的坐标为:(5,2);
故选:B.
【点睛】
本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.
8.C
【分析】
根据平行四边形的性质可得出CD=AB=、∠D=∠CAD=45°,由等角对等边可得出AC=CD=,再利用勾股定理即可求出BC的长度.
【详解】
解:∵四边形ABCD是平行四边形,
∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,
∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,
∴BC=AD==2.
故选C
【点睛】
本题考查了平行四边形的性质、等腰三角形的性质以及勾股定理,根据平行四边形的性质结合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解题的关键.
9.B
【分析】
平行四边形的两条对角线相交和平行四边形的一边构成三角形,这个三角形的两条边是3,5,第三条边就是平行四边形的一条边x,即满足,解得即可.
【详解】
如图,
∵平行四边形ABCD
∴OA=OC=3,OB=OD=5
∴在△AOB中,OB-OA<x<OB+OA
即:2<x<8
故选B.
【点睛】
本题考查平行四边形的性质以及三角形的三边关系定理,确定所求边所在三角形其他两边的长度,进而应用三边关系确定范围是解题的关键.
10.B
【详解】
∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,
∵AC的垂直平分线交AD于点E,∴AE=CE,
∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴ ABCD的周长=2×6=12,
故选B.
11.A
【分析】
由,,分别为三条边的中点,可知DE、EF、DF为的中位线,即可得到的周长.
【详解】
解:如图,
∵,,分别为三条边的中点,
∴,,,
∵,
∴,
故选:A.
【点睛】
本题考查了三角形的中位线,熟练掌握三角形的中位线平行于第三边且是第三边的一半是解题的关键.
12.D
【详解】
A选项:平行四边形的判定定理:有两组对边分别平行的四边形是平行四边形,故本选项正确;
B选项:平行四边形的性质:平行四边形的对角线互相平分,故本选项正确;
C选项:平行四边形的性质:平行四边形的对边平行且相等,故本选项正确;
D选项:平行四边形的对角相等,邻角互补,故本选项错误;
故选D.
13.C
【分析】
根据平行四边形两组对边分别平行可得∠ABC+∠BCD=180°,再根据角平分线的性质可得∠EBC+∠FCB=90°,可得BE⊥CF;过A作AM∥FC,交BC于M,交BE于O,证明△ABE是等腰三角形,进而得到BO=EO,再利用勾股定理计算出EO的长,进而可得答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠ABC+∠BCD=180°,
∵∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,
∴∠EBC+∠FCB=∠ABC+ ∠DCB=90°,
∴EB⊥FC,
∴∠FGB=90°.
过A作AM∥FC,交BC于M,交BE于O,如图所示:
∵AM∥FC,
∴∠AOB=∠FGB=90°,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∵AD∥BC,
∴∠AEB=∠CBE,
∴∠ABE=∠AEB,
∴AB=AE=6,
∵AO⊥BE,
∴BO=EO,
在△AOE和△MOB中,

∴△AOE≌△MOB(ASA),
∴AO=MO,
∵AF∥CM,AM∥FC,
∴四边形AMCF是平行四边形,
∴AM=FC=4,
∴AO=2,
∴EO=,
∴BE=8.
故选:C.
【点睛】
此题考查了平行四边形的性质与判定、全等三角形的判定与性质、等腰三角形的判定和性质以及勾股定理;证明AO=MO,BO=EO是解决问题的关键.
14.A
【分析】
利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=BC,EF=GH=AD,然后代入数据进行计算即可得解.
【详解】
∵BD⊥CD,BD=4,CD=3,
∴BC=,
∵E、F、G、H分别是AB、AC、CD、BD的中点,
∴EH=FG=BC,EF=GH=AD,
∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,
又∵AD=7,
∴四边形EFGH的周长=7+5=12.
故选A.
【点睛】
此题考查三角形中位线定理,勾股定理,解题关键在于求出BC的值
15.A
【分析】
连接BD、ND,由勾股定理得可得BD=4,由三角形中位线定理可得EF=DN,当DN最长时,EF长度的最大,即当点N与点B重合时,DN最长,由此即可求得答案.
【详解】
连接BD、ND,
由勾股定理得,BD==4,
∵点E、F分别为DM、MN的中点,
∴EF=DN,
当DN最长时,EF长度的最大,
∴当点N与点B重合时,DN最长,
∴EF长度的最大值为BD=2,
故选A.
【点睛】
本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.
16.B
【详解】
试题分析:∵DE=BF,∴DF=BE.
∵在Rt△DCF和Rt△BAE中,CD=AB,DF=BE,∴Rt△DCF≌Rt△BAE(HL).
∴FC=EA.故①正确.
∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC.
∵FC=EA,∴四边形CFAE是平行四边形.
∴EO=FO.故②正确.
∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE.∴CD∥AB.
∵CD=AB,∴四边形ABCD是平行四边形.故③正确.
由上可得:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE等.故④图中共有6对全等三角形错误.
故正确的有3个.故选B.
17.A
【分析】
根据已经证明出四边形ADCF是平行四边形,则利用平行四边形的性质可得,可得,证出四边形DBCF是平行四边形,得出,且,即可得出结论且,对照题中步骤,即可得出答案.
【详解】
解:四边形ADCF是平行四边形,


四边形DBCF是平行四边形,
,且;
,
;
且;
对照题中四个步骤,可得②③①④正确;
故答案选:A.
【点睛】
本题考查平行四边形性质与判定综合应用;当题中出现中点的时候,可以利用中线倍长的辅助线做法,证明平行四边形后要记得用平行四边形的性质继续解题.
18.A
【分析】
根据三角形中位线定理即可解答.
【详解】
点,分别是边,的中点,

故选A.
【点睛】
本题考查三角形中位线定理,解题的关键是掌握三角形中位线定理:三角形中位线平行且等于第三边的一半.
19.C
【详解】
由折叠的性质可得DE=BE,
设AE=xcm ,则BE=DE=(9-x)cm,
在Rt中,由勾股定理得:32+ x2=(9-x)2
解得:x=4,
∴AE=4cm,
∴S△ABE=×4×3=6(cm2),
故选C.
20.D
【分析】
根据题意只要证明OA=OD,根据三角形的外角的性质即可解决问题;
【详解】
解:∵矩形ABCD中,对角线AC,BD相交于点O,
∴DB=AC,OD=OB,OA=OC,
∴OA=OD,
∴∠CAD=∠ADO,
∵∠COD=50°=∠CAD+∠ADO,
∴∠CAD=25°,
故选D.
【点睛】
本题考查了矩形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
21.D
【详解】
根据折叠的性质知,四边形AFEB与四边形FDCE全等,有EC=AF=AE,
由勾股定理得,AB2+BE2=AE2即42+(8﹣AE)2=AE2,解得,AE=AF=5,BE=3,
作EG⊥AF于点G,则四边形AGEB是矩形,有AG=3,GF=2,GE=AB=4,由勾股定理得EF=.
故选D.
22.B
【分析】
根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.
【详解】
解:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠DEC=∠ADE,
又∵∠DEC=∠AED,
∴∠ADE=∠AED,
∴AE=AD=10,
在直角△ABE中,BE=,
∴CE=BC﹣BE=AD﹣BE=10﹣8=2.
故选B.
考点:矩形的性质;角平分线的性质.
23.B
【详解】
由折叠的性质可知,∠B′AC=∠BAC,
∵四边形OABC为矩形,
∴OC∥AB,
∴∠BAC=∠DCA,
∴∠B′AC=∠DCA,
∴AD=CD,
设OD=x,则DC=6-x,在Rt△AOD中,由勾股定理得,
OA2+OD2=AD2,
即9+x2=(6-x)2,
解得:x=,
∴点D的坐标为:(0,-),
故选B.
24.B
【分析】
根据点E是AD的中点以及翻折的性质可以求出AE=DE=EG,然后利用“HL”证明△EDF和△EGF全等,根据全等三角形对应边相等可证得DF=GF;设FD=x,表示出FC、BF,然后在Rt△BCF中,利用勾股定理列式进行计算即可得解.
【详解】
解:∵E是AD的中点,
∴AE=DE,
∵△ABE沿BE折叠后得到△GBE,
∴AE=EG,AB=BG,
∴ED=EG,
∵在矩形ABCD中,
∴∠A=∠D=90°,
∴∠EGF=90°,
连接EF,
∵在Rt△EDF和Rt△EGF中,

∴Rt△EDF≌Rt△EGF(HL),
∴DF=FG,
设DF=x,则BF=3+x,CF=3-x,
在Rt△BCF中,BC2+CF2=BF2,即(2)2+(3-x)2=(3+x)2,
解得:x=2,
即DF=2;
故选B.
【点睛】
本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折变换的性质;熟记矩形的性质和翻折变换的性质,根据勾股定理列出方程是解题的关键.
25.A
【分析】
延长AB,DC交于点F,然后利用矩形的性质和勾股定理计算即可.
【详解】
延长AB,DC交于点F,
∵四边形AFDE是矩形,
∴,



故选:A.
【点睛】
本题主要考查矩形的性质和勾股定理,掌握勾股定理是解题的关键.
26.B
【分析】
根据已知条件和图形的变化可得前几个图形的最短边的长度,进而可得结论.
【详解】
解:在△A1A2A3中,∠A1A3A2=90°,∠A2=30°,A1A3=1,An+3是AnAn+1(n=1、2、3…)的中点,可知:
A4A5//A1A3,A3A4=A2A4,
∴∠A3A5A4=90°,∠A4A3A2=∠A2=30°,
∴△A1A2A3是含30°角的直角三角形,
同理可证△AnAn+1An+2是含30°角的直角三角形.
△A1A2A3中最短边的长度为A1A3=1=,
△A3A4A5中最短边的长度为A4A5==,
△A5A6A7中最短边的长度为A5A7=,
…,
所以△AnAn+1An+2中最短边的长度为,
则△A2019A2020A2021中最短边的长度为.
故选:B.
【点睛】
本题考查了规律型:图形的变化类,解决本题的关键是观察图形的变化寻找规律.也考查了直角三角形斜边的中线,三角形的中位线,平行线的性质,含30°角的直角三角形的性质,以及等腰三角形的性质等知识.
27.A
【分析】
由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.
【详解】
由菱形对角线性质知,AO=AC=3,BO=BD=4,且AO⊥BO,
则AB==5,
故这个菱形的周长L=4AB=20.
故选A.
【点睛】
本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.
28.D
【分析】
过点作轴于点,由直角三角形的性质求出长和长即可.
【详解】
解:过点作轴于点,
∵四边形为菱形,,
∴,OB⊥AC,,
∵,∴,
∴,
∴,,
∴,
∴.
故选D.
【点睛】
本题考查了菱形的性质、勾股定理及含30°直角三角形的性质,正确作出辅助线是解题的关键.
29.D
【分析】
利用菱形的面积等于两对角线之积的一半,求解菱形的面积,再利用等面积法求菱形的高即可.
【详解】
解:记AC与BD的交点为,
菱形,
菱形的面积
菱形的面积
故选D.
【点睛】
本题考查的是菱形的性质,菱形的面积公式,勾股定理.理解菱形的对角线互相垂直平分和学会用等面积法是解题关键.
30.D
【分析】
先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.
【详解】
如图所示:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分线交BC于点E,
∴∠DAE=∠BAE,
∴∠BAE=∠BEA,
∴AB=BE,同理可得AB=AF,
∴AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴四边形ABEF是菱形,
∴AE⊥BF,OA=OE,OB=OF=BF=6,
∴OA==8,
∴AE=2OA=16.
故选D.
【点睛】
本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.
31.D
【详解】
解:∵折叠
∴∠DAF=∠FAC,AD=AO,BE=EO,
∵AECF是菱形
∴∠FAC=∠CAB,AOE=90°
∴∠DAF=∠FAC=∠CAB
∵DABC是矩形
∴∠DAB=90°,AD=BC
∴∠DAF+∠FAC+∠CAB=90°
∴∠DAF=∠FAC=∠CAB=30°
∴AE=2OE=2BE
∵AB=AE+BE=3
∴AE=2,BE=1
∴在Rt△AEO中,AO==AD
∴BC=
故选D.
32.B
【分析】
根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
【详解】
解:如图所示,根据题意得AO=,BO=,
∵四边形ABCD是菱形,
∴AB=BC=CD=DA,AC⊥BD,
∴△AOB是直角三角形,
∴AB=,
∴此菱形的周长为:5×4=20.
故选:B.
【点睛】
本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
33.B
【详解】
A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选B.
34.D
【分析】
根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=即可得出结论.
【详解】
①正确.理由:
∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);
②正确.理由:
∵∠BAG=∠FAG,∠DAE=∠FAE.
又∵∠BAD=90°,∴∠EAG=45°;
③正确.理由:
设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;
④正确.理由:
∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
⑤正确.理由:
∵S△ECG=GC CE=×6×8=24.
∵S△FCG===.
故选D.
【点睛】
本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.
35.B
【分析】
根据平行四边形的判定,菱形的判定,正方形的判定,矩形的判定逐一判断即可.
【详解】
解:①一组对边平行,另一组对边相等的四边形是平行四边形,是假命题;
②对角线互相垂直且平分的四边形是菱形,是真命题;
③一个角为90°且一组邻边相等的四边形是正方形,是假命题;
④对角线相等的平行四边形是矩形,是真命题.
故选:B.
【点睛】
本题考查了平行四边形、菱形、正方形、矩形的判定,熟知特殊四边形的判定定理是解题关键.
36.B
【分析】
根据平行四边形的性质,菱形,矩形,正方形的判定逐一判断即可.
【详解】
解:四边形是平行四边形,
,故A正确,
四边形是平行四边形,,
不能推出四边形是菱形,故错误,
四边形是平行四边形,,
四边形是矩形,故C正确,
四边形是平行四边形,,,
四边形是正方形.故D正确.
故选B.
【点睛】
本题考查的是平行四边形的性质,矩形,菱形,正方形的判定,掌握以上知识是解题的关键.
37.A
【分析】
根据正方形和矩形的性质定理解题即可.
【详解】
根据正方形特点由②可以推理出③,再由矩形的性质根据③推出①,
故选A.
【点睛】
此题考查正方形和矩形的性质定理,难度一般.
38.B
【分析】
如图,连接DD',延长C'D'交AD于E,由菱形ABC'D',可得AB∥C'D',进一步说明∠ED'D=30°,得到菱形AE=AD;又由正方形ABCD,得到AB=AD,即菱形的高为AB的一半,然后分别求出菱形ABC'D'和正方形ABCD的面积,最后求比即可.
【详解】
解:如图:延长C'D'交AD于E
∵菱形ABC'D'
∴AB∥C'D'
∵∠D'AB=30°
∴∠A D'E=∠D'AB=30°
∴AE=AD
又∵正方形ABCD
∴AB=AD,即菱形的高为AB的一半
∴菱形ABC′D′的面积为,正方形ABCD的面积为AB2.
∴菱形ABC′D′的面积与正方形ABCD的面积之比是.
故答案为B.
【点睛】
本题主要考出了正方形的性质、菱形的性质以及含30°直角三角形的性质,其中表示出菱形ABC′D′的面积是解答本题的关键.
39.C
【分析】
连接,可证明四边形是矩形,根据正方形的性质可得∠BCD=45°,可知△DFG是等腰直角三角形,根据等腰三角形“三线合一”的性质可得△MBF是直角三角形,根据直角三角形斜边中线的性质,利用勾股定理即可求出MN的长.
【详解】
如图,连接,
∵ABCD是正方形,EF//BC,
∴四边形是矩形,
∵N是CE的中点,BF、CE是矩形BCFE的对角线,
∴三点在同一条直线上.
∵是正方形的对角线,
∴,
∴是等腰直角三角形.
又∵是的中线,
∴也是边上的高,
∴是直角三角形,
∵N为BF的中点,
∴.
故选C.
【点睛】
本题考查了正方形的性质、矩形的性质、等腰三角形的性质及直角三角形斜边中线的性质,等腰三角形顶角的角平分线、底边的高和底边的中线,“三线合一”;直角三角形斜边中线等于斜边的一半;熟练掌握相关性质是解题关键.
40.B
【分析】
根据正方形的对角线平分一组对角可得∠ADB=∠CGE=45°,再求出∠GDT=45°,从而得到△DGT是等腰直角三角形,根据正方形的边长求出DG,再根据等腰直角三角形的直角边等于斜边的倍求解即可.
【详解】
∵BD、GE分别是正方形ABCD,正方形CEFG的对角线,
∴∠ADB=∠CGE=45°,
∴∠GDT=180°-90°-45°=45°,
∴∠DTG=180°-∠GDT-∠CGE=180°-45°-45°=90°,
∴△DGT是等腰直角三角形,
∵两正方形的边长分别为4,8,
∴DG=8-4=4,
∴GT=×4=2.
故选B.
【点睛】
本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等腰直角三角形的判定与性质.
41.12.
【分析】
由菱形的性质得出OA=OC,OB=OD,AC⊥BD,设OA=x,OB=y,由题意得:,解得:,得出AC=2OA=6,BD=2OB=4,即可得出菱形的面积.
【详解】
解:如图1所示:
∵四边形ABCD是菱形,
∴OA=OC,OB=OD,AC⊥BD,
设OA=x,OB=y,
由题意得:,解得:,
∴AC=2OA=6,BD=2OB=4,
∴菱形ABCD的面积=;
故答案为12.
【点睛】
本题考查了菱形的性质、正方形的性质、二元一次方程组的应用;熟练掌握正方形和菱形的性质,由题意列出方程组是解题的关键.
42.18
【分析】
根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.
【详解】
∵D,E分别是AB,BC的中点,
∴AC=2DE=5,AC∥DE,
AC2+BC2=52+122=169,
AB2=132=169,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∵AC∥DE,
∴∠DEB=90°,又∵E是BC的中点,
∴直线DE是线段BC的垂直平分线,
∴DC=BD,
∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,
故答案为18.
【点睛】
本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
43.3
【分析】
由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.
【详解】
∵四边形ABCD是菱形,OB=4,
∴OA=OC,BD=2OB=8;
∵S菱形ABCD=24,
∴AC=6;
∵AH⊥BC,OA=OC,
∴OH=AC=3.
故答案为3.
【点睛】
本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.
44.2
【分析】
依据三角形中位线定理,即可得到MN=BC=2,MNBC,依据△MNE≌△DCE(AAS),即可得到CD=MN=2.
【详解】
解:∵M,N分别是AB和AC的中点,
∴MN是△ABC的中位线,
∴MN=BC=2,MN∥BC,
∴∠NME=∠D,∠MNE=∠DCE,
∵点E是CN的中点,
∴NE=CE,
∴△MNE≌△DCE(AAS),
∴CD=MN=2.
故答案为:2.
【点睛】
本题主要考查了三角形中位线定理以及全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
45.30°或150°.
【分析】
分等边△ADE在正方形的内部和外部两种情况分别求解即可得.
【详解】
如图1,
∵四边形ABCD为正方形,△ADE为等边三角形,
∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,
∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,
∴∠AEB=∠CED=15°,
则∠BEC=∠AED﹣∠AEB﹣∠CED=30°;
如图2,
∵△ADE是等边三角形,
∴AD=DE,
∵四边形ABCD是正方形,
∴AD=DC,
∴DE=DC,
∴∠CED=∠ECD,
∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,
∴∠CED=∠ECD=×(180°﹣30°)=75°,
∴∠BEC=360°﹣75°×2﹣60°=150°,
故答案为30°或150°.
【点睛】
本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质、运用分类讨论思想画出符合题意的图形并准确识图是解题的关键.
46.
【分析】
取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.
【详解】
解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.
∵∠AMD=90°,AD=4,OA=OD,
∴OM=AD=2,
∵AB∥CD,
∴∠GCF=∠B=60°,
∴∠DGO=∠CGE=30°,
∵AD=BC,
∴∠DAB=∠B=60°,
∴∠ADC=∠BCD=120°,
∴∠DOG=30°=∠DGO,
∴DG=DO=2,
∵CD=4,
∴CG=2,
∴OG=2,GF=,OF=3,
∴ME≥OF﹣OM=3﹣2,
∴当O,M,E共线时,ME的值最小,最小值为3﹣2.
【点睛】
本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
47.1
【分析】
过E作,过G作,过H作,与相交于I,分别求出HI和GI的长,利用勾股定理即可求解.
【详解】
过E作,过G作,过H作,垂足分别为P,R,R,与相交于I,如图,
∵四边形ABCD是正方形,
∴,

∴四边形AEPD是矩形,
∴,
∵点E,F分别是AB,BC边的中点,
∴,
,,
∵点G是EC的中点,
是的中位线,

同理可求:,
由作图可知四边形HIQP是矩形,
又HP=FC,HI=HR=PC,
而FC=PC,
∴ ,
∴四边形HIQP是正方形,
∴,

是等腰直角三角形,
故答案为:1.
【点睛】
此题主要考查了正方形的判定与性质,三角形的中位线与勾股定理等知识,正确作出辅助线是解答此题的关键.
48.20
【分析】
由垂美四边形的定义可得AC⊥BD,再利用勾股定理得到AD2+BC2=AB2+CD2,从而求解.
【详解】
∵四边形ABCD是垂美四边形,
∴AC⊥BD,
∴∠AOD=∠AOB=∠BOC=∠COD=90°,
由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,
AB2+CD2=AO2+BO2+CO2+DO2,
∴AD2+BC2=AB2+CD2,
∵AD=2,BC=4,
∴AD2+BC2=22+42=20,
故答案为:20.
【点睛】
本题主要考查四边形的应用,解题的关键是理解新定义,并熟练运用勾股定理.
49.
【分析】
先根据菱形的性质求出AB,再求出菱形面积,即可求出DH的值.
【详解】
解:∵四边形ABCD是菱形,
∴OA=OC=4,OB=OD=3,AC⊥BD,
在Rt△AOB中,AB==5,
∵S菱形ABCD= AC BD,
S菱形ABCD=DH AB,
∴DH 5=×6×8,
∴DH=.
故答案为:
【点睛】
本题考查了菱形的性质,熟练掌握菱形的性质和面积的两种表示方式是解题关键.
50.7cm
【分析】
根据平行四边形的性质可知,平行四边形的对角线互相平分,即OA=OC,OB=OD,所以△AOD的周长比△AOB的周长小3cm,即AB-AD=3cm,所以AB可求.
【详解】
∵平行四边形ABCD,
∴AB=CD,AD=BC,OA=OC,OB=OD,
∵平行四边形ABCD的周长为22cm,
∴AD+AB=11cm,
∴△AOD的周长=AD+AO+OD,△AOB的周长=AB+AO+OB,
而△AOD的周长比△AOB的周长小3cm,即AB-AD=3cm,
∴,
解得, AB=7cm.
故答案是: 7.
【点睛】
考查了平行四边形的性质,平行四边形的性质有:(1)平行四边形的对边平行且相等.(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分.
51.22.5
【分析】
根据正方形的性质求出∠CAB=∠ACB=45°,再根据AC=AE求出∠ACE=67.5°,由此即可求出答案.
【详解】
∵四边形ABCD是正方形,
∴∠DAB=∠DCB=90°,
∵AC是对角线,
∴∠CAB=∠ACB=45°,
∵AC=AE,
∴∠ACE=67.5°,
∴∠BCE=∠ACE-∠ACB=22.5°,
故答案为:22.5°.
【点睛】
此题考查正方形的性质,等腰三角形的性质,三角形的内角和性质,是一道较为基础的题型.
52.
【详解】
试题解析:∵四边形ABCD是矩形,
∴OB=OD,OA=OC,AC=BD,
∴OA=OB,
∵AE垂直平分OB,
∴AB=AO,
∴OA=AB=OB=3,
∴BD=2OB=6,
∴AD=.
【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.
53.2
【分析】
根据平行四边形的性质结合角平分线的定义可求解∠CBE=∠BEC,即可得CB=CE,利用等腰三角形的性质得到BF=EF,进而可得GF是△ABE的中位线,根据三角形的中位线的性质可求解.
【详解】
在平行四边形ABCD中,AB∥CD,
∴∠ABE=∠BEC.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠CBE=∠BEC,
∴CB=CE.
∵CF⊥BE,
∴BF=EF.
∵G是AB的中点,
∴GF是△ABE的中位线,
∴GF=AE,
∵AE=4,
∴GF=2.
故答案为:2.
【点睛】
本题主要考查了平行四边形的性质,等腰三角形的性质与判定,三角形中位线的性质,证明GF是△ABE的中位线是解题的关键.
54.
【分析】
以BM为边作等边△BMN,以BC为边作等边△BCE,如图,则△BCM≌△BEN,由全等三角形的对应边相等得到CM=NE,进而得到AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.根据等腰三角形“三线合一”的性质得到BH⊥AE,AH=EH,根据30°直角三角形三边的关系即可得出结论.
【详解】
以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.
∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,∴BH=AB=3,AH=BH=,∴AE=2AH=.
故答案为.
【点睛】
本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.
55.(1)证明见解析;(2)BC=2CD,理由见解析.
【详解】
分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
(2)BC=2CD.
证明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中点,
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
56.(1)证明见解析;(2)10.
【详解】
试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.
试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;
(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=10.
点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.
57.(1)见解析;(2)OE=5,BG=2.
【分析】
(1)先证明EO是△DAB的中位线,再结合已知条件OG∥EF,得到四边形OEFG是平行四边形,再由条件EF⊥AB,得到四边形OEFG是矩形;
(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=AB=AD=5,得到FG=5,最后BG=AB-AF-FG=2.
【详解】
解:(1)证明:∵四边形ABCD为菱形,
∴点O为BD的中点,
∵点E为AD中点,
∴OE为△ABD的中位线,
∴OE∥FG,
∵OG∥EF,∴四边形OEFG为平行四边形
∵EF⊥AB,∴平行四边形OEFG为矩形.
(2)∵点E为AD的中点,AD=10,
∴AE=
∵∠EFA=90°,EF=4,
∴在Rt△AEF中,.
∵四边形ABCD为菱形,
∴AB=AD=10,
∴OE=AB=5,
∵四边形OEFG为矩形,
∴FG=OE=5,
∴BG=AB-AF-FG=10-3-5=2.
故答案为:OE=5,BG=2.
【点睛】
本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于中考常考题型,需要重点掌握.
58.(1)证明见解析(2)菱形
【详解】
分析:(1)根据正方形的性质和全等三角形的判定证明即可;
(2)四边形AECF是菱形,根据对角线垂直的平行四边形是菱形即可判断;
详证明:(1)∵四边形ABCD是正方形,
∴AB=AD,
∴∠ABD=∠ADB,
∴∠ABE=∠ADF,
在△ABE与△ADF中

∴△ABE≌△ADF.
(2)如图,连接AC,
四边形AECF是菱形.
理由:在正方形ABCD中,
OA=OC,OB=OD,AC⊥EF,
∴OB+BE=OD+DF,
即OE=OF,
∵OA=OC,OE=OF,
∴四边形AECF是平行四边形,
∵AC⊥EF,
∴四边形AECF是菱形.
点睛:本题考查正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是熟练掌握基本知识.
59.(1)见解析;(2)24
【分析】
(1)由四边形ABCD是平行四边形得出AB=CD,ABCD,进而得到∠BAC=∠DCA,再结合AO=CO,M,N分别是OA和OC中点即可求解;
(2)证明△ABO是等腰三角形,结合M是AO的中点,得到∠BMO=∠EMO=90°,同时△DOC也是等腰三角形,N是OC中点,得到∠DNO=90°,得到EMDN,再由(1)得到EM=DN,得出四边形EMND为矩形,进而求出面积.
【详解】
解:(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,ABCD,OA=OC,
∴∠BAC=∠DCA,
又点M,N分别为、的中点,
∴,
在和中,

∴.
(2)BD=2BO,又已知BD=2AB,
∴BO=AB,∴△ABO为等腰三角形;
又M为AO的中点,
∴由等腰三角形的“三线合一”性质可知:BM⊥AO,
∴∠BMO=∠EMO=90°,
同理可证△DOC也为等腰三角形,
又N是OC的中点,
∴由等腰三角形的“三线合一”性质可知:DN⊥CO,
∠DNO=90°,
∵∠EMO+∠DNO=90°+90°=180°,
∴EMDN,
又已知EM=BM,由(1)中知BM=DN,
∴EM=DN,
∴四边形EMND为平行四边形,
又∠EMO=90°,∴四边形EMND为矩形,
在Rt△ABM中,由勾股定理有:,
∴AM=CN=3,
∴MN=MO+ON=AM+CN=3+3=6,
∴.
故答案为:.
【点睛】
本题考查了平行四边形的性质、矩形的判定和性质、矩形的面积公式等,熟练掌握其性质和判定方法是解决此类题的关键.
60.(1)见解析;(2)时,四边形EGCF是矩形,理由见解析.
【分析】
(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;
(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF是平行四边形,即可得出结论.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,OB=OD,OA=OC,
∴∠ABE=∠CDF,
∵点E,F分别为OB,OD的中点,
∴BE=OB,DF=OD,
∴BE=DF,
在△ABE和△CDF中,
(2)当AC=2AB时,四边形EGCF是矩形;理由如下:
∵AC=2OA,AC=2AB,
∴AB=OA,
∵E是OB的中点,
∴AG⊥OB,
∴∠OEG=90°,
同理:CF⊥OD,
∴AG∥CF,
∴EG∥CF,
∵EG=AE,OA=OC,
∴OE是△ACG的中位线,
∴OE∥CG,
∴EF∥CG,
∴四边形EGCF是平行四边形,
∵∠OEG=90°,
∴四边形EGCF是矩形.
【点睛】
本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题.
61.(1)见解析;(2)
【详解】
试题分析:(1)先证明四边形AEFD是平行四边形,再证明∠AEF=90°即可.
(2)证明△ABF是直角三角形,由三角形的面积即可得出AE的长.
试题解析:(1)证明:∵CF=BE,
∴CF+EC=BE+EC.
即 EF=BC.
∵在 ABCD中,AD∥BC且AD=BC,
∴AD∥EF且AD=EF.
∴四边形AEFD是平行四边形.
∵AE⊥BC,
∴∠AEF=90°.
∴四边形AEFD是矩形;
(2)∵四边形AEFD是矩形,DE=8,
∴AF=DE=8.
∵AB=6,BF=10,
∴AB2+AF2=62+82=100=BF2.
∴∠BAF=90°.
∵AE⊥BF,
∴△ABF的面积=AB AF=BF AE.
∴AE=.
62.(1);(2);(3)存在,或,理由见解析.
【分析】
(1)由路程=速度时间,解得,再由即可解题;
(2)由全等三角形对应边相等的性质得,即,据此解题;
(3)分两种情况讨论,当时或当时,与全等,再根据全等三角形对应边相等的性质,分别计算求出的值即可解得的值.
【详解】
解:(1)由题意得,,

故答案为:;
(2)若


当时,;
(3)存在,理由如下:
当时,

当时,
综上所述,当或时,与全等.
【点睛】
本题考查四边形综合题、全等三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.
63.(1)见解析;(2)见解析
【分析】
(1)根据全等三角形的判定定理(AAS)进行判断;
(2)根据全等三角形的性质和平行四边形判定定理,即可得到答案.
【详解】
证明:(1)∵,
∴,
∵点F是的中点,
∴,
在与中,,
∴;
(2)∵,
∴,
∵,
∴,
∵,
∴四边形是平行四边形.
【点睛】
本题考查全等三角形的判定和性质、平行四边形判定定理,解题的关键是熟练掌握全等三角形的判定和性质、平行四边形判定定理.
64.(1)30;(2)见解析.
【分析】
(1)根据平行四边形的对角线互相平分确定AO和DO的长,然后求得周长即可;
(2)利用勾股定理的逆定理判定直角三角形即可.
【详解】
解:(1)∵四边形ABCD是平行四边形,
∴对角线AC与BD相互平分,
∴OA=OC=AC,OB=OD=BD,
∵AC=26,BD=10,
∴OA=13,OD=5,
∵AD=12,
∴△AOD的周长=5+12+13=30;
(2)由(1)知 OA=13,OD=5,AD=12,
∵52+ 122=132 ,
∴在△AOD中,AD2+DO2=AO2 ,
∴△AOD是直角三角形.
【点睛】
本题考查了平行四边形的性质、三角形周长的计算和利用勾股定理的逆定理判定直角三角形,掌握平行四边形的性质 解题的关键.
65.(1)证明见解析;(2)4.
【分析】
(1)由AD∥BC,BD平分∠ABC,可得AD=AB,结合AD∥BC,可得四边形ABCD是平行四边形,进而,可证明四边形ABCD是菱形,
(2)由四边形ABCD是菱形,可得OC=AC=2,在Rt△OCD中,由勾股定理得:OD=4,根据“在直角三角形中,斜边上的中线等于斜边的一半”,即可求解.
【详解】
(1)证明:∵AD∥BC,
∴∠ADB=∠CBD,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∴∠ADB=∠ABD,
∴AD=AB,
∵AB=BC,
∴AD=BC,
∵AD∥BC,
∴四边形ABCD是平行四边形,
又∵AB=BC,
∴四边形ABCD是菱形;
(2)解:∵四边形ABCD是菱形,
∴AC⊥BD,OB=OD,OA=OC=AC=2,
在Rt△OCD中,由勾股定理得:OD==4,
∴BD=2OD=8,
∵DE⊥BC,
∴∠DEB=90°,
∵OB=OD,
∴OE=BD=4.
【点睛】
本题主要考查菱形的判定定理及性质定理,题目中的“双平等腰”模型是证明四边形是菱形的关键,掌握直角三角形的性质和勾股定理,是求OE长的关键.
66.(1)见解析;(2)不可能,理由见解析
【分析】
(1)证明△ABF≌△DAE,从而得到AF=DE,AE=BF,可得结果;
(2)若要四边形是平行四边形,则DE=BF,则∠BAF=45°,再证明∠BAF≠45°即可.
【详解】
解:(1)证明:∵正方形,
∴AB=AD,∠BAF+∠DAE=90°,
∵DE⊥AG,
∴∠DAE+∠ADE=90°,
∴∠ADE=∠BAF,
又∵,
∴∠BFA=90°=∠AED,
∴△ABF≌△DAE(AAS),
∴AF=DE,AE=BF,
∴;
(2)不可能,理由是:
如图,若要四边形是平行四边形,
已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,
∵DE=AF,
∴BF=AF,即此时∠BAF=45°,
而点G不与B和C重合,
∴∠BAF≠45°,矛盾,
∴四边形不能是平行四边形.
【点睛】
本题考查了全等三角形的判定和性质,正方形的性质,平行四边形的性质,解题的关键是找到三角形全等的条件.
67.(1)见解析(2)①1;②2
【详解】
试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;
(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;
②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.
试题解析:(1)证明:∵四边形ABCD是菱形,
∴ND∥AM,
∴∠NDE=∠MAE,∠DNE=∠AME,
又∵点E是AD边的中点,
∴DE=AE,
∴△NDE≌△MAE,
∴ND=MA,
∴四边形AMDN是平行四边形;
(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:
∵AM=1=AD,
∴∠ADM=30°
∵∠DAM=60°,
∴∠AMD=90°,
∴平行四边形AMDN是矩形;
②当AM的值为2时,四边形AMDN是菱形.理由如下:
∵AM=2,
∴AM=AD=2,
∴△AMD是等边三角形,
∴AM=DM,
∴平行四边形AMDN是菱形,
考点:1.菱形的判定与性质;2.平行四边形的判定;3.矩形的判定.
68.(1) 四边形是垂美四边形,理由见解析;(2)证明见解析;(3) .
【分析】
(1)根据垂直平分线的判定定理,可证直线是线段的垂直平分线,结合“垂美四边形”的定义证明即可;
(2)根据垂直的定义和勾股定理解答即可;
(3)连接、,先证明,得到∴,可证,即,从而四边形是垂美四边形,根据垂美四边形的性质、勾股定理、结合(2)的结论计算即可.
【详解】
(1)四边形是垂美四边形.
证明:连接AC,BD,
∵,
∴点在线段的垂直平分线上,
∵,
∴点在线段的垂直平分线上,
∴直线是线段的垂直平分线,
∴,即四边形是垂美四边形;
(2)猜想结论:垂美四边形的两组对边的平方和相等.
如图2,已知四边形中,,垂足为,
求证:
证明:∵,
∴,
由勾股定理得,,

∴;
故答案为.
(3)连接、,
∵,
∴,即,
在和中,,
∴,
∴,又,
∴,即,
∴四边形是垂美四边形,
由(2)得,,
∵,,
∴,,,
∴,
∴.
【点睛】
本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,正确理解垂美四边形的定义、灵活运用勾股定理是解题的关键.
69.(1)见解析;(2)见解析.
【分析】
(1)结合题目条件,通过证明△BCF≌△DAE来证明AE=CF即可;
(2)由△BCF≌△DAE,得到BF=DE,而//,得到四边形BFDE为平行四边形,结合BE=DE,即可得证.
【详解】
(1)证明:∵四边形ABCD为平行四边形;
∴AD//BC,AD=BC
∴∠BCF=∠DAE;
又∵DE//BF
∴∠BFE=∠DEF;
∴∠BFC=∠DEA;
在△BCF和△DAE中:
∴△BCF≌△DAE(AAS)
∴CF=AE
(2)由(1)得△BCF≌△DAE;
∴BF=DE;
又∵BF//DE;
∴四边形BFDE为平行四边形;
又∵BE=DE;
∴平行四边形BFDE为菱形
【点睛】
本题主要考察了全等三角形的判定和性质,平行四边形的性质和判定以及菱形的判定,解题的关键是熟练掌握并运用相关的判定和性质进行推理证明.
70.(1)60°;(2)证明见解析.
【分析】
(1)根据题意可得∠BCD=2∠BCF=120°,利用平行四边形的性质即可解答;
(2)根据平行四边形的性质及角平分线即可证明△ABE≌△CDF,再利用全等三角形的性质即可证明.
【详解】
(1)∵CF平分∠DCB,
∴∠BCD=2∠BCF=120°
∵四边形ABCD是平行四边形,
∴∠ABC=180°-∠BCD=180°-120°=60°.
(2)∵四边形ABCD是平行四边形,
∴∠BAD=∠DCB,AB=CD,AB∥CD,
∴∠ABE=∠CDF.
∵AE,CF分别平分∠BAD和∠DCB,
∴∠BAE=∠BAD,∠CDF=∠DCB,
∴∠BAE=∠CDF,
∴△ABE≌△CDF,
∴BE=DF.
【点睛】
本题主要考查了平行四边形的性质,解题的关键是熟悉平行四边形的性质以及全等三角形的判定.
答案第1页,共2页