一元二次方程
教材分析:1.本节以生活中的实际问题为背景,引出一元二次方程的概念,让学生掌握一元二次方程的特点,归纳出一元二次方程的一般形式,给出一元二次方程的根的概念,并指出一元二次方程的根不唯一。本节内容是在前面所学方程、一元一次方程、整式、方程的解的基础上进行学习,也是后面学习二次函数的一个基础。
2.这些概念是全章后继内容的基础。
3.让学生体会数学来源于生活,又服务于生活的基本思想。
学情分析:1.授课班级学生基础较差,学生成绩参差不齐,差生较多。教学中应给予充分思考的时间,注意讲练结合,以学生为本,体现生本课堂的理念。
2.该班级学生在平时训练中已经形成了良好的合作精神和合作气氛,可以充分发挥合作的优势,从而充分调动学生主动性和积极性,使课堂气氛活跃,让学生在愉快的环境中学习。
3.作为该班的班主任,同时又担任该班的数学教学,对学生学习情况有比较深入地了解,在解决具体问题的时候可以兼顾不同能力的学生,充分调动学生的积极性,在练习题的设计上要针对学生的差异采取分层设计的方法,着重加强对学生的双基训练。
教学目标:
一 知识与技能:
1.理解一元二次方程的概念,能判断一个方程是一元二次方程。
2.掌握一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项.
二 过程与方法:
1.引导学生分析实际问题中的数量关系,组织学生讨论,让学生类比、抽象出一元二次方程的概念 。
2.培养独立思考,合作交流学,分析问题,解决问题的能力。
三 情感态度与价值观:
1.培养学生主动探究知识、自主学习和合作交流的意识.
2.激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识.
3.让学生体会数学来源于生活,又服务于生活的基本思想,从而意识到数学在生活中的作用。
教学重点:一元二次方程的概念及一般形式,利用概念解决实际问题。
教学难点:1.由实际问题向数学问题的转化过程.
2.正确识别一般式中的“项”及“系数”.
3.一元二次方程的特点,如何判断一个方程是一元二次方程。
教学过程:
一、创设情境,引入新课
1.问题1:广安区为增加农民收入,需要调整农作物种植结构,计划2015年无公害蔬菜的产量比2013年翻一番,要实现这一目标,2014年和2015年无公害蔬菜产量的年平均增长率是多少?(通过放幻灯片引入)
设无公害蔬菜产量的年平均增长率为x,2013年的产量为a(a≠0),翻一番的意思就是a变为2a,那么
(1)用代数式表示2014年的产量;
(2)2015年蔬菜的产量比2013年增加了2x,对吗?为什么?你能用代数式表示出来吗?
学生思考交流得出方程a(1+x)2=2a
整理得,x2+2x-1=0…………①
2.通过幻灯片引入情境,提出问题:
问题2:广安市政府在一块宽200m、长320m的矩形广场上,修筑宽相等的三条小路(两条纵向、一条横向,纵向与横向垂直),把矩形空地分成大小一样的6块,建成小花坛,要使花坛的总面积为57000m2,问小路的宽应为多少?
设小路的宽为x m,则横向小路的面积如何表示?纵向的呢?重叠部分的面积是多少?小路所占的面积用x的代数式如何表示?
这个问题的相等关系是什么?
320×200-(320x+2×200x-2x2)=57000
整理得x2-36x+35=0
谁还能换一种思路考虑这个问题?
把6个小花坛拼起来是一个多长多宽的矩形,由此你会得出什么样的方程?
(320-2x)(200-x)=57000
整理得x2-36x+35=0…………②
比较一下,哪种方法更巧妙
通过幻灯片引入情景。问题3:广安重百商场销售某品牌服装,若每件盈利50元,则每月可销售100件。若每件降价1元,则每月可多卖出5件,若每月要盈利6000元,则商场决定每件服装降价多少?
设每件降价x元,则现在的盈利为(50-x)元,降价后销售量为(100+5X)件。可列方程为:(50-x)(100+5X)=6000
让学生整理变为一般形式为:
X2-30X+200=0…..........…
通过多媒体演示,把文字转化为图形,帮助学生理解题意,从而由学生独立思考,列出满足条件的方程。
二、启发探究,获得新知:
引导学生观察方程①、②、,谁能说出这两个方程的特点?对比一元一次方程,是否知道它是什么方程?学生回顾一元一次方程的有关概念,从而更好地掌握一元二次方程的概念。
概念:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程。
三个条件:1.整式方程 2.一个未知数 3.未知数的最高次数为2。
标准形式; ax2+bx+c=0(a≠0)
介绍一次项、二次项、常数项、一次项系数、二次项系数。
特别强调:a≠0,要正确说出各项系数,必须化成标准形式 .
提问:说出下列方程的一次项系数、二次项系数和常数项
X2-2x-1=0
2X2-0.5x+3.2=0
讲解例1把方程4x(x-3)=5(x-2)—1先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项。
整理一般形式后,教师应强调整理过程中应用到的等式变形方法,如去括号,移项,合并同类项,去分母等。
学生练习
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:(由学生以抢答的形式来完成此题,并让学生找出错误理由.)
(1)x2十3x-2=O
(2)x2—3x-4=0;
(3)3x2=5
(4)4x2十3x=2;
(5)3x2—5=0;
2.把下列方程化成一般形式,并写出它的二次项系数、一次项系数和常数项:
⑴ (x2-1)= 2 x ⑵ 2(x-3)2=(x-5)2-1
3.判断下列关于x的方程是否是一元二次方程:
⑴xy-x2=3 (2) x+1/x2=0 (3)x2=0
这两小题教师要作适当引导,鼓励学生分类讨论 ,学生交流、讨论,谈谈自己的收获或感悟。此题有一定难度,引导学生分类讨论,培养学生思维的严密性,进一步体会数学的严谨性和逻辑性。
归纳小结,拓展提高:
1.问题:本节课你又学会了哪些新知识
2.思维拓展:
若方程(m+2)xm2-2+3x-2=0是关于x的一元二次方程,求m的值。
解此题一定要结合概念。
布置作业:课本P21练习第1、第2题;基础训练
板书设计:
1、概念:只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程。
2、三个条件:1.整式方程 2.一个未知数 3.未知数的最高次数为2。
3、标准形式:ax2+bx+c=0(a≠0)
4、一次项、二次项、常数项、一次项系数、二次项系数。
5、 例1把方程 4x(x-3)=5(x-2)—1化为一般形式,并说出二次项系数、一次项系数和常数项
6、 把下列方程化成一般形式,并写出它的二次项系数、一次项系数和常数项:
⑴3(x2-1)= 2 x ⑵ 2(x-3)2=(x-5)2-1
教学反思:
本节课主要介绍一元二次方程的概念及一般形式ax2+bx+c=0(a≠0)的概念,是典型的概念课。在教学过程中使用四环节循环教学法,让学生经历自学质疑——合作释疑——展示评价——巩固深化的过程。强调自主学习,注重合作交流,让学生与学生的合作交流在探究过程中进行,使他们在自主探索的过程中理解和掌握一元二次方程的概念及一般形式,并获得数学活动的经验,提高探究、发现和创新的能力。让学生经历了一元二次方程的产生过程,并结合一元一次方程的概念让学生来归纳出一元二次方程的三个特点①只有一个未知数;②未知数的最高次数是2次;③方程两边都是整式。
本节的第二个知识点就是一元二次方程的一般形式,学生在理解起来是比较容易的,引导学生养成将方程左边写成降幂形式。但在练习中也会有不少学生会把二次项和一次项位置写反掉,或是在写系数时没有带上符号。特别要强调二次项的系数不等于0,即 a≠0。
通过这节课的点评与自我反思,以后要在师生交流方面都下工夫,重视学生的想法,多给学生一点"自主"学习的时间,以学生为本,深化生本课堂的理念,同时加强板书教学,提高学生课堂学习的"实效"。