(共18张PPT)
小结与复习
第五章 相交线与平行线
相交线
一般情况
邻补角
对顶角
邻补角互补
对顶角相等
特殊
垂直
存在性和唯一性
垂线段最短
点到直线的距离
同位角、内错角、同旁内角
平行线
平行公理及其推论
平行线的判定
平行线的性质
平移
平移的特征
命题
知识构图
两线四角
三线八角
专题一 相交线
例1.如图,直线AB、CD、EF、MN相交,若∠2=∠5,
找出图中与∠2 互补的角.
F
N
C
E
A
B
D
M
1
2
3
4
5
8
6
7
解:∵ ∠1+∠2=180°,
∠2+∠3= 180°,
∴∠2的补角有∠1和∠3.
∵ ∠5+∠8=180°,
∠5+∠6=180 °,且∠2=∠5,
∴∠2的补角有∠6和∠8.
专题二 点到直线的距离
例2.如图,AO⊥FD,OD为∠BOC的平分线,OE为射线OB的反向延长线,若∠AOB=40°,求∠EOF、∠COE的度数.
A
F
D
O
B
C
E
解:∵AO⊥OD,且∠AOB=40°,
∴∠BOD=90°-40°=50°,
∴∠EOF=50°.
又∵OD平分∠BOC,
∴∠DOC=∠BOD=50°,
∴∠COE=180°-50°-50°=80°.
专题三 平行线的性质和判定
理由如下:
∵ AC平分∠DAB(已知)
∴ ∠1=∠2(角平分线定义)
又∵ ∠1= ∠3(已知)
∴ ∠2=∠3(等量代换)
∴ AB∥CD(内错角相等,两直线平行)
例3.如图 已知∠1= ∠3,AC平分∠DAB,你能判断
哪两条直线平行?请说明理由?
2
3
A
B
C
D
)
)
1
(
解: AB∥CD.
例4.如图,EF∥AD,∠1=∠2,∠BAC=70 °,求∠AGD 的度数.
解:
∵EF∥AD,
(已知)
∴∠2=∠3.
又∵∠1=∠2,
∴∠1=∠3.
∴DG∥AB.
∴∠BAC+∠AGD=180°.
∴∠AGD=180°-∠BAC=180°-70°=110°.
(两直线平行,同位角相等)
(已知)
(等量代换)
(内错角相等,两直线平行)
(两直线平行,同旁内角互补)
D
A
G
C
B
E
F
1
3
2
专题四 平移
1m
21m
15m
A
C
D
B
例5.如图是一块长方形的草地, 长为21m,宽为15m.在草地上有一条宽为1m的小道,长方形的草地上除小道外长满青草.求长草部分的面积为多少
思路点拨:平移构成规则图形
解:长草部分的面积=(21-1)×15=300(m2).
课后跟踪训练
1.如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=58°,则∠BED的度数为 .
C
A
B
E
F
D
32°
2.如图,可以确定AB∥CE的条件是( )
A.∠2=∠B
B. ∠1=∠A
C. ∠3=∠B
D. ∠3=∠A
C
1
2
3
A
E
B
C
D
3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶
方向与原来相同,这两次拐弯的角度可能是( )
A.第一次向右拐50 ,第二次向左拐130
B.第一次向左拐30 ,第二次向右拐30
C.第一次向右拐50 ,第二次向右拐130
D.第一次向左拐50 ,第二次向左拐130
B
4.填空:如图,
(1)∠1= 时,AB∥CD;
(2)AD∥BC时,∠3= .
D
1
2
3
4
5
A
B
C
F
E
∠2
∠5
或∠4
解: ∵ AB∥DE( )
∴∠A= ______ ( )
∵AC∥DF( )
∴∠D+ _______=180o ( )
∴∠A+∠D=180o( )
5.如图2,若AB∥DE , AC∥DF,试说明∠A+∠D=180°.请补全下面的解答过程,括号内填写依据.
图2
F
C
E
B
A
D
P
已知
∠CPD
两直线平行,同位角相等
已知
∠CPD
两直线平行,同旁内角互补
等量代换
6.有这样一道题:如图,AB//CD,∠A=100°, ∠C=110°,求∠AEC的度数. 请补全下列解答过程
E
A
B
C
D
2
1
CD
EF
1
2
1
2
80
80
70
70
150
F
解:过点E作EF//AB.
∵AB//CD(已知),
∴ // (平行于同一直线的两直线平行).
∴∠A+∠ =180o,∠C+∠ =180o(两直线平行,同旁内角互补).
又∵∠A=100°,∠C=110°(已知),
∴∠ = °, ∠ = °.
∴∠AEC=∠1+∠2= °+ ° = °.
7.已知AB⊥BF,CD⊥BF,∠1= ∠2,试说明∠3=∠E.
A
B
C
D
E
F
1
2
3
解:
∵∠1=∠2
∴AB∥EF
(内错角相等,两直线平行).
(已知),
∵AB⊥BF,CD⊥BF,
∴AB∥CD
∴EF∥CD
∴ ∠3= ∠E
(垂直于同一条直线的两条直线平行).
(平行于同一条直线的两条直线平行).
(两直线平行,同位角相等).
8.如图,MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.
解:过点F向左作FQ,使∠MFQ=∠2=50°,
则∠NFQ=∠MFN-∠MFQ=90°-50°=40°,所以AB∥FQ.
又因为∠1=140°,
所以∠1+∠NFQ=180°,
所以CD∥FQ,所以AB∥CD.
Q
9、如图,AB//CD,探索∠B、∠D与∠DEB的大小关系 .
解:过点E 向左作EF//AB.
∴∠B+∠BEF=180°.
∵AB//CD,
∴EF//CD.
∴∠D +∠DEF=180°.
∴∠B+∠D+∠DEB
=∠B+∠D+∠BEF+∠DEF
=360°,
即∠B+∠D+∠DEB=360°.
F
谢谢欣赏!